首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses a dispersion effect in a grating-based time-domain delay line that is different from the second- or higher-order dispersion in a grating-based Fourier-domain delay line. When the lateral broadening of the beam profile after grating dispersion exceeds the collection aperture of the reference fiber, the peripheral spectrum is decoupled by the fiber. The loss of reference spectral bandwidth by this geometric-beam broadening thus degrades the axial resolution. The polarizing-beam reflector used in the Fourier-domain delay line for suppression of lateral beam walk-off is implemented in this grating-based time-domain delay line to minimize geometric-beam broadening. Theoretical analysis and experiments are given to validate the axial resolution improvement after geometric-beam broadening is minimized. In vitro and in vivo imaging results are presented to demonstrate the improvement. It is also shown that geometric-beam broadening may exist in other optical coherence tomography reference arm configurations.  相似文献   

2.
《Materials Letters》2004,58(27-28):3532-3535
In this presentation, we report the results of spectral characteristics of amplified spontaneous emission (ASE) from a newly Er3+-doped tellurite fiber with D-shape cladding. When pumped at 980 nm, an erbium ASE source that has nearly a flatten FWHM bandwidth of 100 nm is obtained in the D-shape cladding erbium-doped tellurite fiber with 30–60 cm length. The changes in ASE with regard to pumping power and fiber lengths were measured. Output power up to 2.0 mW is obtained with a total pump power of 660 mW.  相似文献   

3.
Geng J  Wang Q  Jiang S 《Applied optics》2012,51(7):834-840
Broadband mid-infrared supercontinuum pulses were generated directly from a short piece of active fiber in a single-mode Tm-doped fiber amplifier. The broadband mid-infrared pulses have an extremely high spectral flatness with ~600 nm FWHM bandwidth (from 1.9 μm to 2.5 μm), >15 kW peak power, and >20 GW/cm(2) laser peak intensity. This new approach exhibits a significantly different physical mechanism from other supercontinuum generation demonstrations in the literature, in which usually a piece of passive fiber was used for nonlinear spectral broadening. The physical mechanism for the broadband mid-infrared supercontinuum generation in this approach has been attributed to a combined effect of two superradiative processes of Tm(3+) ions (i.e., the (3)F(4)-(3)H(6) transition covering the 1.8~2.1 μm spectral region and the (3)H(4)-(3)H(5) transition covering the 2.2~2.5 μm spectral region), and also nonlinear optical processes as well in the Tm-doped gain fiber. The spectra of the mid-infrared supercontinuum pulses were further broadened in a 2 m chalcogenide fiber with 20 dB bandwidth ~1100 nm and a 3 m fluoride fiber with 20 dB bandwidth ~2600 nm.  相似文献   

4.
1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O (molfraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/2→4I13/2 transition in fiber is at 1.33 μm wavelength with a spectral bandwidth of 55 nm, which is similar to that in bulk. In the case of the fiber, the lifetime of 4F3/2 level is 164μs, and the quantum efficiency is ~100%. The figure-of-merit for gain (σoT0) for Nd3 -doped tellurite glass is about 2.8×10-24 cm2.s, which is quite comparable with that in Nd3 -doped fluoroaluminate glasses, and is an order of magnitude larger than pr3 -doped fluoride glasses.  相似文献   

5.
Tan Z  Long X 《Applied spectroscopy》2012,66(5):492-495
A developed spectrometer based on optical-feedback cavity ring-down spectroscopy (OF-CRDS) has been demonstrated with a distributed feedback laser diode and a V-shaped glass ceramic cavity. The laser is coupled to the V-shaped cavity, which creates an absorption path length greater than 2.8 km, and resonance between the laser frequency and the cavity modes is realized by modulating the cavity length instead of tuning the laser wavelength to obtain a higher resolution. A noise-equivalent absorption coefficient of ~2.6 × 10(-8) cm(-1)Hz(-1/2) (1σ) is determined with spectral resolution of ~0.003 cm(-1) and spectral range of 1.2 cm(-1). As an application example, the absorption spectrum measurement of water vapor in the spectral range of 6590.3~6591.5 cm(-1) is demonstrated with this spectrometer.  相似文献   

6.
We describe in detail a new procedure of maximizing the bandwidth of mid-infrared (mid-IR) supercontinuum (SC) in highly nonlinear microstructured As2Se3 and tellurite aperiodic nanofibers. By introducing aperiodic rings of first and secondary air holes into the cross-sections of our microstructured fiber designs, we achieve flattened and all-normal dispersion profiles over much broader bandwidths than would be possible with simple periodic designs. These fiber designs are optimized for efficient, broadband, and coherent SC generation in the mid-IR spectral region. Numerical simulations show that these designs enable the generation of a SC spanning over 2290?nm extending from 1140 to 3430?nm in 8?cm length of tellurite nanofiber with input energy of E?=?200?pJ and a SC bandwidth of over 4700?nm extending from 1795 to 6525?nm generated in only 8?mm-length of As2Se3-based nanofiber with input energy as low as E?=?100?pJ. This work provides a new type of broadband mid-IR SC source with flat spectral shape as well as excellent coherence and temporal properties by using aperiodic nanofibers with all-normal dispersion suitable for applications in ultrafast science, metrology, coherent control, non-destructive testing, spectroscopy, and optical coherence tomography in the mid-IR region.  相似文献   

7.
Soares OD  Costa JL 《Applied optics》1999,38(10):2007-2013
A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.  相似文献   

8.
A new approach to wavelength-modulation photoacoustic spectroscopy is reported, which incorporates diode lasers in the near infrared and optical fiber amplifiers to enhance sensitivity. We demonstrate the technique with ammonia detection, yielding a sensitivity limit less than 6 parts in 10(9), by interrogating a transition near 1532 nm with 500 mW of output power from the fiber amplifier, an optical pathlength of 18.4 cm, and an integration time constant of 10 s. This sensitivity is 15 times better than in prior published results for detecting ammonia with near-infrared diode lasers. The normalized minimum detectable fractional optical density, alphaminl, is 1.8 x 10(-8); the minimum detectable absorption coefficient, alphamin, is 9.5 x 10(-10) cm(-1); and the minimum detectable absorption coefficient normalized by power and bandwidth is 1.5 x 10(-9) W cm(-1)/square root Hz. These measurements represent what we believe to be the first use of fiber amplifiers to enhance photoacoustic spectroscopy, and this technique is applicable to all other species that fall within the gain curves of optical fiber amplifiers.  相似文献   

9.
The airborne differential absorption lidar LEANDRE II, developed for profiling tropospheric water-vapor mixing ratios, is described. The emitter is a flash-lamp-pumped alexandrite laser, which operates in a double-pulse, dual-wavelength mode in the 727-736 nm spectral domain. Two 50-mJ successive on-line and off-line pulses with an output linewidth of 2.4 x 10(-2) cm(-1) and a spectral purity larger than 99.99% are emitted at a 50-mus time interval. The spectral positioning is controlled in real time by a wavemeter with an absolute accuracy of 5 x 10(-3) cm(-1). The receiver is a 30-cm aperture telescope with a 3.5-mrad field of view and a 1-nm filter bandwidth. These instrument characteristics are defined for measuring the water-vapor mixing ratio with an accuracy better than 0.5 g kg(-1) in the first 5 km of the atmosphere with a range resolution of 300 m, integration on 100 shots, and an instrumental systematic error of less than 2%. The sensitivity study and first results are presented in part II [Appl. Opt. 40, 3462-3475 (2001)].  相似文献   

10.
Cylindrical fiber diffusers have become common tools for various medical therapies. However, their large outer diameters and short lengths restrict their clinical application in some newly developed light therapies. Here, a 250-microm outer-diameter diffuser with an active length that exceeds 5 cm is presented. Diffusers are created in photosensitive optical fibers with outer cladding diameters of 140 microm by use of a structured beam from an excimer laser. Predetermined emission profiles can be achieved. Photometric characteristics, including longitudinal, polar, and azimuthal emission diagrams, were determined by use of a goniometer to assess the light-emission performance of the diffuser. Longitudinal isotropy of better than +/- 10% was achieved. Polar and azimuthal emissions were within +/- 15% of those of an ideal linear Lambertian emitter. Polar uniformity could be improved by an insignificant increase in the outer diameter by use of a diffusing recoating compound. The residual leakage of light at the distal end of the diffuser can be as little as 1%. Other physical parameters tested include minimal bending radius after recoating (< 5 mm) and maximum power handling (> 1.0W cm(-1)). All materials employed were biocompatible.  相似文献   

11.
Gao W  Liao M  Yan X  Suzuki T  Ohishi Y 《Applied optics》2012,51(13):2346-2350
We demonstrate quasi-continuous wave supercontinuum generation in a single-mode high-nonlinear fiber (HNLF) in 1.55 μm band, which is pumped by the amplified passively Q-switched submicrosecond pulse. The pump wavelength is in the normal dispersion region of HNLF and near to the zero-dispersion wavelength. The broad SC spectral range from 1200 to 2260 nm is obtained with the low pump peak power of 17.8 W. The 20 dB bandwidth of 922 nm from 1285 to 2207 nm is obtained with the assumption that the peak near 1560 nm is filtered. The spectrum density for the 20 dB bandwidth is from -27.5 to -7.5 dbm/nm.  相似文献   

12.
The spectral signatures of nitro attack of the aromatic portion of thermoplastic urethanes (TPU) were determined. Eight fragment molecules were synthesized that represent the nitrated and pristine methylenediphenyl section common to many TPUs. Infrared (IR) and Raman (785 nm illumination) spectra were collected and modeled using the B3LYP/6-31G(d)//B3LYP/6-31G(d) model chemistry. Normal mode animations were used to fully assign the vibrational spectra of each fragment. The vibrational assignment was used to develop a diagnostic method for aromatic nitro attack in thermoplastic urethanes. The symmetric NO(2) stretch coupled out of phase with the C-NO(2) stretch (1330 cm(-1)) was found to be free from spectral interferences. Spectral reference regions that enable correction for physical differences between samples were determined. The carbonyl stretch at 1700 cm(-1) was the best IR reference region, yielding a limit of quantitation (LOQ) of 0.66 +/- 0.02 g N/100 g Estane. Secondary IR reference regions were the N-H stretch at 3330 cm(-1) or the urethane nitrogen deformation at 1065 cm(-1). The reference region in the Raman was a ring stretching mode at 1590 cm(-1), giving an LOQ of 0.69 +/- 0.02 g N/100 g Estane. Raman spectroscopy displayed a larger calibration sensitivity (slope = 0.110 +/- 0.004) than IR spectroscopy (slope = 0.043 +/- 0.001) for nitration determination due to the large nitro Raman cross-section. The full spectral assignment of all eight molecules in the infrared and Raman is presented as supplemental material.  相似文献   

13.
A preliminary investigation into the diagnostic potential of an infrared fiber optic probe (IFOP) for evaluating degenerative human articular cartilage is described. Twelve arthritic human tibial plateaus obtained during arthroplasty were analyzed using the IFOP. Infrared spectra were obtained from IFOP contact with articular surface sites visually graded normal or degraded (Collins Scale grade 1 and grade 3, respectively). Comparisons of infrared spectral parameters (peak heights and areas) were made to elucidate spectral indicators of surface degeneration. IFOP spectral analysis revealed subtle but consistent changes between grades 1 and 3 sites. Infrared absorbance bands arising from type II collagen were observed to change with degradation. More degraded tissues exhibited increased amide II (1590-1480 cm(-1))/1338 cm(-1) area ratio (p=0.034) and decreased 1238/1227 cm(-1) peak ratio (p = 0.017); similar changes were seen with Fourier transform infrared imaging spectroscopy (FT-IRIS) analysis. Grades 1 and 3 cartilage showed consistent spectral differences in the amide II, III, and 1338 cm(-1) regions that are likely related to type II collagen degradation that accompanies cartilage degeneration. These results suggest that it may be possible to monitor subtle changes related to early cartilage degeneration, allowing for IFOP use during arthroscopy for in situ determination of cartilage integrity.  相似文献   

14.
L波段掺铒光纤超荧光光源和放大器研究   总被引:11,自引:1,他引:10  
通过优化铒光纤长度,获得了平坦谱宽达30nm(0.7dB)的L波段超荧光光源,该光源具有7.21dBm的输出功率。在此基础上,研究L波段放大器增益特性,通过对铒光纤长度的进一步优化,用1480nm激光器作前向泵浦源,实验上获得了波长从1565nm~1595nm范围平坦的增益带宽,小信号增益可达22dB。  相似文献   

15.
Group velocity dispersion (GVD) measurement is presented utilizing supercontinuum (SC) white pulses generated in an optical fiber by 15 μm compact laser sources. This provides 1) ultrawide continuous spectral measurement range >600 nm from a single optical source without the use of interpolation formulae and 2) stable far-end measurements by the simultaneous multi-wavelength nature of the SC pulses. A novel method that is independent of the detector bandwidth is proposed which measures λ-dependent phase shifts of one of the Fourier components of a short pulse train. Fiber GVD's of unusual dispersion characteristics were measured using SC pulses extended over the spectral range of 1150-1770 nm. It is shown that fiber lengths of up to 130 km can be measured with a group delay resolution of 0.01 ps/km  相似文献   

16.
Fibers exhibiting flattened and decreasing dispersion are important in nonlinear applications. Such fibers are difficult to design, particularly in soft glass. In this work, we develop a preliminary design of a highly nonlinear tapered hybrid microstructured optical fiber (TH-MOF) with chalcogenide glass core and tellurite glass microstructure cladding. We then numerically studied its dispersion, loss, and nonlinearity-related optical properties under fundamental mode systematically using the infinitesimal method. The designed TH-MOF exhibits low chromatic dispersion that is similar to a convex function with two zero-dispersion wavelengths and decreases with fiber length from 2 to 5 μm band. The potential use of the TH-MOF in nonlinear applications is demonstrated numerically by a supercontinuum spectrum of 20 dB bandwidth covering 1.96–4.76 μm generated in 2-cm-long TH-MOF using near 3.25-μm fs-laser pump.  相似文献   

17.
We designed an asymmetric Czerny-Turner-type spectrometer with a spectral resolution of approximately 1 cm(-1) and a focal length of 500 mm (F/4.1) to improve the aberration properties: (1) coma aberration was corrected by use of a particular incident angle for a condensing mirror based onShafer's equation, (2) astigmatism was corrected by use of a toroidal condensing mirror, (3) the optimum distance was found between a grating and condensing mirror so that the centered light and marginal light at the detector possess the same incident angles to the condensing mirror (the aberration is therefore excellently corrected over the whole detector surfaces), and (4) these optimal configurations are ensured in a wide wavelength between 400 and 800 nm by use of gratings with different grooves. Then the spectrometer was constructed, and the excellent optical properties were confirmed with aligned fiber images and Raman spectra from copper phthalocyanine.  相似文献   

18.
Larar AM  Hays PB  Drayson SR 《Applied optics》1998,37(21):4721-4731
The global distribution of tropospheric ozone (O(3)) can be observed from a satellite-based instrument by spectrally isolating the pressure-broadened wings of strong O(3) lines. The Fabry-Perot interferometer (FPI) provides high spectral resolution and high-throughput capabilities that are essential for performing such a measurement. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O(3) measurements can simultaneously observe a stratospheric component and thus the total O(3) column abundance. We present a conceptual instrument design that involves a double-etalon fixed-gap series configuration FPI along with an ultranarrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately 0.068 cm(-1), sampling the narrow 1054.2-1055.2 cm(-1) spectral region within the strong 9.6-mum ozone infrared band from a nadir-viewing satellite configuration.  相似文献   

19.
Yang S  Zhao N  Zhang L  Zhong H  Liu R  Zou B 《Nanotechnology》2012,23(25):255203
We demonstrate a solution-processed colloidal quantum dot (CQDs) photodetector with the configuration of a field-effect transistor (FET), in which the drain and source electrodes are fabricated by a shadow mask. By blending PbS CQDs into the hybrid blend, poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methylester (PCBM), the photosensitive spectrum of the nanocomposite blend is extended into the near-infrared region. A FET-based photodetector ITO/PMMA (180?nm)/P3HT:PCBM:PbS (110?nm)/Al, in which PMMA (polymethylmethacrylate) acts as the dielectric layer and P3HT:PCBM:PbS (in weight ratio of 1:1:1) as the active layer, shows a broad spectral bandwidth, a responsivity of 0.391?mA?W(-1) and a specific detectivity of 1.31?×?10(11) Jones are obtained at V(GS)?=?1?V under 600?nm illumination with an intensity of 30?μW?cm(-2). Therefore, it provides an easy way to fabricate such a FET-based photodetector with a channel length of some hundreds of micrometers by a shadow mask.  相似文献   

20.
Sato M  Wakaki I  Watanabe Y  Tanno N 《Applied optics》2005,44(13):2471-2481
We describe the fundamental characteristics of a synthesized light source (SLS) consisting of two low-coherence light sources to enhance the spatial resolution for optical coherence tomography (OCT). The axial resolution of OCT is given by half the coherence length of the light source. We fabricated a SLS with a coherence length of 2.3 microm and a side-lobe intensity of 45% with an intensity ratio of LED1:LED2 = 1:0.5 by combining two light sources, LED1, with a central wavelength of 691 nm and a spectral bandwidth of 99 nm, and LED2, with a central wavelength of 882 nm and a spectral bandwidth of 76 nm. The coherence length of 2.3 microm was 56% of the shorter coherence length in the two LEDs, which indicates that the axial resolution is 1.2 microm. The lateral resolution was measured at less than 4.4 microm by use of the phase-shift method and with a test pattern as a sample. The measured rough surfaces of a coin are illustrated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号