首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前酸性染料染色废水中染料和重金属Cr(Ⅵ)引起的严重环境污染问题,以零价铁(Fe0)/氧化石墨烯(GO)复合物作为吸附剂,以分别含有弱酸性蓝AS和Cr(Ⅵ)的水溶液模拟染色废水,探究Fe0与GO的质量比、溶液pH值及染料与Cr(Ⅵ)的初始质量浓度对吸附性能的影响,考察Fe0/GO吸附剂对酸性染料与Cr(Ⅵ)的吸附机制,研究其吸附热力学与动力学。结果表明:Fe0与GO吸附剂在质量比为4∶1时具有最佳吸附效果,弱酸性蓝AS染液初始质量浓度为75 mg/L,温度为30℃,pH值为4.0时,12 h后去除率为85.6%,最大吸附量达到85.6 mg/g; Cr(Ⅵ)溶液初始质量浓度为75 mg/L,温度为30℃,pH值为3.0时,12 h后去除率为95.8%,最大吸附量达到95.8 mg/g; Fe0/GO对2种污染物的吸附过程均符合Langmuir模型和准二级动力学模型。  相似文献   

2.
采用硫酸(1+19)溶液对香芋皮粉末进行改性制备吸附剂,利用静态吸附法,研究吸附剂粒径、投加量、吸附温度、吸附时间和初始废水的p H、Cr(Ⅵ)初始质量浓度对Cr(Ⅵ)吸附效果的影响。结果表明,吸附剂吸附Cr(Ⅵ)的最佳工艺条件为:改性香芋皮粉末的粒径200目,投加量1.0 g、吸附温度30℃、吸附时间360 min,初始废水p H 3以及Cr(Ⅵ)初始质量浓度150 mg/L。在此工艺条件下,改性香芋皮粉末吸附剂对Cr(Ⅵ)具有良好的吸附性能,对Cr(Ⅵ)的吸附量可达到7.491 mg/g,Cr(Ⅵ)的吸附率可达99.88%。用HCl溶液(1+5)对吸附饱和的吸附剂可解吸再生。  相似文献   

3.
以废弃革制品中的皮革为吸附剂,进行了去除废水中Cr(Ⅵ)的研究。考察了废弃革制品皮革对Cr(Ⅵ)的吸附性能。结果表明,废弃革制品中皮革吸附Cr(Ⅵ)的吸附等温线可以用Langmuir方程拟合;随着吸附剂投加量的增加,Cr(Ⅵ)的去除率在不断升高最后趋于稳定;吸附时间延长,废弃革制品的皮革对Cr(Ⅵ)的吸附量逐渐增大,拟二级动力学模型适用于废弃革制品的皮革吸附剂吸附Cr(Ⅵ)的吸附过程;溶液pH值增大,废弃革制品的皮革吸附溶液中Cr(Ⅵ)的吸附量随之减小;而温度升高,废弃革制品的皮革吸附Cr(Ⅵ)的吸附量增大的幅度不是很大。故利用废弃革制品的皮革制备吸附剂吸附废水中的Cr(Ⅵ)具有一定的应用价值。  相似文献   

4.
Cr(Ⅵ)具有较强的生物毒性,若未经妥善处置直接排入水体会对环境造成较大的影响。以氨基化石墨烯为填料,聚乙烯亚胺为基质,通过溶液共混-冷冻干燥可制得氨基化石墨烯/聚乙烯亚胺复合材料(GO-NH2/PEI),研究结果表明,固定GO-NH2的用量为35%,当溶液pH值为2、吸附剂用量0.4 g/L、Cr(Ⅵ)含量100 mg/L、吸附温度318 K和吸附时间300 min时,GO-NH2/PEI对Cr (Ⅵ)的吸附量和吸附率分别为229.80 mg/g和91.92%。GO-NH2/PEI对溶液中Cr(Ⅵ)的吸附行为更符合准二级动力学模型和Langmuir等温吸附模型,表明吸附过程是基于化学吸附的单层吸附。经过循环吸附再生第5次使用,GO-NH2/PEI对Cr(Ⅵ)的吸附量207.92 mg/g,仍可保持90.48%的再生率,说明其重复使用性能良好。  相似文献   

5.
用聚乙烯亚胺改性稻草秸秆(PEI-RS),研究处理温度、吸附剂用量、处理时间和溶液初始浓度对Cu(Ⅱ)和Cr(Ⅵ)吸附的影响。结果表明:在溶液p H5、处理温度35℃、吸附剂用量0.2 g、处理时间120 min的条件下,初始浓度为40 mg/L的Cu(Ⅱ)和30 mg/L的Cr(Ⅵ)的吸附率分别达到94.99%、96.16%。PEI-RS对该2种重金属离子的吸附过程都符合准二级动力学模型和Langmuir吸附等温模型。  相似文献   

6.
利用柠檬酸改性板栗壳、松子壳,微波辐射的条件下,对水中Cr(Ⅵ)进行吸附。考察p H、Cr(Ⅵ)初始浓度、吸附剂投加量、吸附时间等因素对吸附效果的影响。结果表明,最佳吸附条件:p H为1、温度313K、Cr(Ⅵ)初始浓度50 mg/L、吸附剂投加量为0.5 mg、吸附时间为100 min时,2种吸附剂对Cr(Ⅵ)的去除率都达到98%以上。吸附剂对水中Cr(Ⅵ)的吸附符合Langmuir等温模型和拟二级吸附动力学模型。  相似文献   

7.
通过预处理和酯化方法制备改性玉米秸秆,通过正交试验和单因素对比试验探究改性秸秆对Cr(Ⅵ)的吸附机制与最佳吸附条件。结果表明:秸秆投加量和p H值对Cr(Ⅵ)的吸附影响较大,在温度40℃,投加量0.04g,吸附时间45min,pH=3,Cr(Ⅵ)初始浓度10mg/L最佳条件下,吸附率达到最大值96.8%,吸附容量为121mg/g,是未改性秸秆的10.3倍。FT-IR显示改性后玉米秸秆有酯基生成和羧基的引入,电镋扫描结果表明纤维素结构更加有序,改性玉米秸秆作为新型生物吸附剂用于吸附皮革废水中的Cr(Ⅵ)具有潜在应用前景。  相似文献   

8.
将不同质量比的聚乙烯醇(PVA)、壳聚糖(CS)和硝酸铈(Ce(NO3)3)溶于稀乙酸中,进行静电纺丝,制备PVA/CS/Ce(NO3)3共混纤维毡。运用扫描电镜和红外光谱对吸附前后的样品进行表征。研究了pH、时间、浓度对Cr(Ⅵ)吸附的影响。结果表明:纤维毡对Cr(Ⅵ)的吸附是基团与基团的螯合作用,pH=4时吸附效果最好,吸附等温线符合Langmuir吸附模型,对Cr(Ⅵ)的吸附饱和量为59.81mg/g,Cr(Ⅵ)的去除率达到87%。  相似文献   

9.
在硫酸介质中,利用Cr(Ⅵ)和高碘酸钾在室温下协同氧化二苯胺磺酸钠使其显色,建立了用流动注射法测定皮革废水中微量Cr(Ⅵ)的新方法。方法的线性范围浓度为0.005~0.700mg/L,检出限1.0μg/L,加标回收率在96.7%~103.3%之间。本方法可在线快速测定制革废水中的微量铬(Ⅵ)。  相似文献   

10.
通过微波预处理和马来酸改性制备花生壳吸附剂,用于研究Cr(Ⅵ)的吸附性能,并进行结构表征,吸附条件优化,探讨等温吸附及吸附动力学特性。XRD分析表明:微波预处理后花生壳的结晶度明显下降。FTIR显示:改性后花生壳结构中有酯基和羧基成功引入。正交试验和单因素试验结果表明:pH值对Cr(Ⅵ)的吸附影响最大,在温度80℃,投加量6 g,吸附时间45 min, pH=3,Cr(Ⅵ)初始浓度30 mg/L最佳条件下,吸附率达到最大值99.3%,远高于未改性花生壳。吸附行为符合准二级动力学方程和Langmuir等温吸附模型,以单层吸附为主。  相似文献   

11.
通过对球形木素珠体(SLB)进行两步化学改性,接枝具有固化SLB自身结构和造孔功能的氰基官能团以及对重金属离子存在吸附作用的胺基官能团,得到胺化氰乙基木素吸附剂(SLBAN)。实验探索了SLBAN对Cr(Ⅵ)溶液的吸附行为,考察了SLBAN用量、吸附时间和pH值等因素对吸附的影响,并依据动力学和热力学模型进行分析。结果表明,SLBAN对Cr(Ⅵ)的吸附符合准二级动力学模型;当吸附剂用量为2 g/L,pH值为2时,吸附约3 h达到平衡,Cr(Ⅵ)去除率达到86%左右,在328 K,SLBAN的饱和吸附容量为102 mg/g;吸附过程同时符合Langmuir和Freundlich方程,整个过程是自发的吸热反应过程,吸附过程为熵推动过程。  相似文献   

12.
印染废水中的Cr(Ⅵ)是一种毒性较大的污染物,而功能化聚吡咯材料对重金属离子具有优良的吸附性。通过共聚改性法成功合成了一种新型复合吸附剂聚[1-(2-氨乙基)吡咯](PPy-NH2),并将其用作吸附水溶液中Cr(Ⅵ)的吸附剂,重点研究了该吸附材料去除Cr(Ⅵ)的影响因素和吸附机理。结果表明:PPy-NH2的吸附能力随溶液pH的降低而增强,当pH=1.6时,吸附量为164.3mg/g;吸附量随着PPy-NH2用量的增加而增大,当PPy-NH2用量为4 g时基本达到吸附平衡,去除率为97.11%;任一共存离子浓度增加均会降低PPy-NH2对Cr(Ⅵ)的去除率。PPy-NH2复合材料是一种高效的Cr(Ⅵ)吸附剂。  相似文献   

13.
采用墨角藻作为低成本的吸附剂处理制革废水。制革废水呈黄棕色且具有高浓度的Cr(Ⅵ)。因此,使用Cr(Ⅵ)溶液和4种颜料混合,模拟制革废水。基于Box-Behnken设计,采用响应面分析法优化吸附过程。选择初始溶液pH、生物质含量和预处理中CaCl2溶液浓度为主要参数。统计学分析结果表明:pH值的影响可以忽略不计,生物质含量和CaCl2溶液浓度是主要的影响参数。在最优条件下,98%的Cr(Ⅵ)和88%的染料被除去。相比Temkin,Langmuir和D-R等温模型,Freundlich等温模型能够很好地拟合平衡数据。另外,证实了吸附后的吸附剂可以作为糙皮侧耳菌生产酶的支持基质。  相似文献   

14.
不同改性方法对制浆木片筛渣吸附效果的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
木片筛渣为木材原料制浆削片备料过程中产生的废弃物,由木屑和木针组成。本课题分别采用1mol/L的HNO_3、1mol/L的H_3PO_4和1mol/L的NaOH对木片筛渣进行功能化改性,探讨了不同改性的木片筛渣,在不同吸附条件下对含铬废水中Cr(VI)吸附(去除)效果的影响。结果表明,当Cr(VI)初始浓度为15 mg/L,木片筛渣用量为40 g/L,吸附体系的pH值为2,吸附温度为30℃左右,吸附时间为80 min时,不同改性后木片筛渣对Cr(VI)的去除率均可达到70%以上,其中经HNO_3改性的木片筛渣吸附效果最好,Cr(VI)的去除率可达93.8%。  相似文献   

15.
酿酒废弃葡萄皮渣对Cr(VI)的吸附能力研究   总被引:1,自引:1,他引:0       下载免费PDF全文
邹磊 《现代食品科技》2012,28(8):930-932
利用酿酒后废弃葡萄皮渣(WGP)作为吸附剂,对溶液中六价铬离子Cr(Ⅵ)进行吸附试验,研究了吸附时间、粒径、用量、溶液pH、Cr离子浓度对吸附率的影响。结果如下:WGP对Cr(Ⅵ)的吸附4 h就基本达到平衡,吸附率为87.97%;粒径小于60目的WGP表现出更强的吸附能力;吸附率与WGP用量正相关,用量1 g以上吸附率趋于稳定在88%左右;WGP对Cr(VI)的吸附率随着pH值增加而下降,直至pH为3时,吸附率趋于平衡;溶液中Cr浓度越高,葡萄皮渣对Cr(Ⅵ)的吸附率越高。研究表明:酿酒后葡萄皮渣具有较强吸附铬Cr(Ⅵ)的能力,可作为铬吸附剂,用于废水治理。  相似文献   

16.
采用墨角藻作为低成本的吸附剂处理制革废水。制革废水呈黄棕色且具有高浓度的Cr(Ⅵ)。因此,使用Cr(Ⅵ)溶液和4种颜料混合,模拟制革废水,基于Box-Behnken设计,采用响应面分析法优化吸附过程。选择初始溶液pH、生物质含量和预处理中CaCl_2溶液浓度为主要参数。统计学分析结果表明:pH值的影响可以忽略不计,生物质含量和CaCl_2溶液浓度是主要的影响参数。在最优条件下,98%的Cr(Ⅵ)和88%的染料被除去。相比Temkin,Langmuir和D-R等温模型,Freundlich等温模型能够很好地拟合平衡数据。另外,证实了吸附后的吸附剂可以作为糙皮侧耳菌生产酶的支持基质。  相似文献   

17.
研究了黑曲霉菌丝体-壳聚糖对Cr(Ⅵ)的吸附特性。以废弃黑曲霉菌丝体、壳聚糖作为吸附剂制备原料,采用环氧氯丙烷进行交联,三聚磷酸钠进行固化,制备成黑曲霉菌丝体-壳聚糖复合型吸附剂。探究了pH值、黑曲霉菌丝体-壳聚糖的投加量对Cr(Ⅵ)的吸附影响。实验结果表明,黑曲霉菌丝体-壳聚糖的用量为0.5 g时对Cr(Ⅵ)吸附率最高达到92.30%,pH=6时对Cr(Ⅵ)吸附率最高达84.32%。动力学数据分析表明黑曲霉菌丝体-壳聚糖生物吸附剂对Cr(Ⅵ)的吸附过程符合准二级动力学模型(R2=1)。同时该吸附过程符合Freundlich等温线模型,最大吸附量为108.23mg/g;扫描电镜和红外光谱证实吸附反应发生吸附剂的颗粒表层,主要活性基团为-OH,-COOH。上述结果表明,黑曲霉菌丝体-壳聚糖对Cr(Ⅵ)吸附性能良好,绿色环保,应用前景广泛。  相似文献   

18.
以花生壳渣为吸附剂,研究了其对水中Cr(Ⅵ)的吸附去除能力,考察了花生壳渣用量、Cr(Ⅵ)初始质量浓度、溶液p H、吸附时间以及吸附温度对Cr(Ⅵ)去除效果的影响。结果表明:在实验条件范围内,花生壳渣对Cr(Ⅵ)去除率随花生壳渣用量、吸附时间和吸附温度的增加而增加,随Cr(Ⅵ)初始质量浓度和溶液p H的增加而降低。花生壳渣吸附Cr(Ⅵ)的过程更符合准二级动力学吸附模型。花生壳渣对水中Cr(Ⅵ)具有良好的吸附去除能力。  相似文献   

19.
建立了在Cr (Ⅵ)-二苯基碳酰二肼高灵敏度显色体系下,采用流动注射分析技术测定废水中Cr (VI)和Cr(Ⅲ)的新方法,并确定了该方法的最佳条件.结果表明,在25 mL溶液中,Cr(Ⅵ)在0.0~1.0 mg/L范围内与吸光度有良好的线性关系,线性回归方程为A=0.0022 0.2335c,相关系数为0.9989,相对标准偏差为0.13%,检测限为0.016 mg/L.  相似文献   

20.
聚乙烯醇(PVA)是印染废水有机污染物的主要来源,同时含铬显影剂的使用导致部分印染废水含有六价铬(Cr(Ⅵ)),高浓度PVA及高毒性Cr(Ⅵ)的协同处理技术亟待突破。利用过硫酸盐热活化可引发聚合物发生自由基交联反应的特点,研究印染废水中PVA及Cr(Ⅵ)协同处理的方法。考察了过硫酸盐投加量、反应温度、初始pH值、Cr(Ⅵ)初始浓度等因素对二者去除效率的影响,借助X射线光电子能谱、凝胶渗透色谱等手段分析了反应沉淀物及剩余废水中残留物,探索了PVA及Cr(Ⅵ)的协同处理机制。结果表明:当过硫酸盐质量浓度为8.0 g/L、反应温度为70℃、废水pH值小于6时,模拟印染废水的化学需氧量去除率达91.9%,PVA去除率可达98.0%,Cr(Ⅵ)还原率为94.3%;过硫酸盐热活化引发PVA自由基交联及PVA的还原性是PVA高效沉淀及Cr(Ⅵ)有效还原的主要原因,此类浆料与重金属污染物的协同处理在印染废水方面具有一定的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号