首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用碱性蛋白酶和木瓜蛋白酶对葵花籽粕蛋白进行酶解,并利用微波对其进行预处理。以多肽产物抗氧化性为指标,通过单因素及响应面法对预处理条件进行优化,获取最佳预处理条件。结果表明,最佳微波预处理条件为微波时间3min、微波功率500W、微波温度57℃。在此条件下,葵花籽粕多肽对超氧阴离子自由基(O2-·)和羟基自由基(·OH)清除能力分别为72.78%和54.13%。   相似文献   

2.
以葵花籽粕蛋白粉为原料,利用超声波对其进行预处理,采用碱性蛋白酶和木瓜蛋白酶为酶制剂对葵花籽粕蛋白进行酶解,以抗氧化性为指标,通过单因素及响应面法对预处理条件进行优化,获取最佳预处理工艺。结果表明,葵花籽粕蛋白质的超声波最佳预处理工艺为:超声波时间25 min、超声波功率187.5 W、超声波温度40℃。在此条件下,葵花籽粕多肽对超氧阴离子自由基(O2-·)和羟基自由基(·OH)清除能力分别为67.11%和52.47%。  相似文献   

3.
为获得优质的核桃粕蛋白,本研究通过单因素实验和响应面法分别对碱溶酸沉法提取核桃粕蛋白工艺和糖化酶纯化核桃粕蛋白工艺条件进行优化,并对其溶解性、吸水性、乳化性等功能性质进行了分析。结果表明,最佳提取工艺条件为:pH12,温度55℃,时间90 min,料液比1:40 g/mL。在此条件下,核桃粕蛋白的提取率可达到81.89%±1.64%,其沉降点是pH4.5。最佳纯化工艺条件为:pH4.5,料液比1:40 g/mL,酶解时间129 min,酶解温度53℃,加酶量0.4%。经此条件纯化的核桃粕蛋白的纯度可达到94.48%±1.83%。核桃蛋白的功能性质结果表明,中性条件下其溶解度为24.82%,吸水性3.06 g/g,吸油性3.15 g/g,乳化性16.10 m2/g,乳化稳定性为38.87 min,起泡性为30.53%,起泡稳定性为75.44%,在同一pH条件下,纯化后的核桃蛋白具有较好的功能性质。  相似文献   

4.
以脱去绿原酸后的葵花籽粕作为原料,以蛋白质提取率为指标,通过单因素和正交试验确定碱溶酸沉法制备葵花籽粕蛋白的最优工艺条件,使用蛋白层析仪通过阴离子交换层析对粗蛋白进行分离纯化。结果表明:葵花籽粕蛋白最优提取工艺为:料液比1:20,温度45℃,时间30 min,碱液pH12;在此条件下,葵花籽粕蛋白提取率为61.04%±0.24%,蛋白含量(以蛋白质含量计)为66.94%±0.24%;葵花籽粕蛋白质分离纯化最优工艺为:上样量3 mL、洗脱液流速0.4 mL/min,葵花籽粕蛋白含量(以蛋白质含量计)为93.20%±1.37%,比纯化前提高了39.23%。  相似文献   

5.
6.
酶解葵花籽粕蛋白制备降血压肽的工艺研究   总被引:3,自引:0,他引:3  
建立胰蛋白酶水解葵花籽粕蛋白制备降血压肽的工艺。以酶解物对血管紧张素转换酶抑制率、苦味值和蛋白水解度为指标,对pH、温度、底物浓度、加酶量和酶解时间等酶解条件进行单因素实验,并在此基础上,选择酶解时间、pH、温度等参数通过正交实验,确定了酶解葵花籽粕蛋白制备降血压肽的最优参数组合为:底物浓度为3.5%,加酶量2.85%,pH7.5、温度45℃和酶解时间5min,所得葵花籽粕降血压肽产品的IC50值为6.06mg/mL。   相似文献   

7.
以葵花籽粕血管紧张素转化酶(ACE)抑制肽为原料,采用DA201-C大孔吸附树脂对其进行分离纯化,并对纯化后的葵花籽粕ACE抑制肽稳定性和活性进行了分析。结果表明:葵花籽粕ACE抑制肽最优纯化工艺为乙醇浓度70%、上样p H 5、上样流速2 BV/h、洗脱流速2 BV/h,在此条件下,得率为93.26%,纯化后的葵花籽粕ACE抑制肽的抑制率为92.23%±0.48%。葵花籽粕ACE抑制肽对热和金属离子均具有良好的稳定性,模拟体内消化实验显示其活性不受胃肠酶的影响。  相似文献   

8.
《食品与发酵工业》2015,(7):137-141
以马齿苋籽粕蛋白为原料,以持水性等蛋白质功能性质和HLB值为指标,对马齿苋籽粕蛋白的功能性质进行了研究,并考察了马齿苋籽粕蛋白对核桃乳浊液稳定性的影响。结果表明:马齿苋籽粕蛋白的持水性和起泡性均低于大豆分离蛋白,但持油性略高,且乳化性和乳化稳定性远高于大豆分离蛋白;经分析测定马齿苋籽粕蛋白的HLB值为11,其在核桃乳浊液中单独使用的最适添加量为5 mg/g,沉淀率为0.034 g/m L;混合乳化剂的最优配方为,马齿苋籽粕蛋白、Tween-80和Tween-20的质量分数分别为55%、26%和19%,此混合乳化剂最适添加量为4 mg/g。说明马齿苋籽粕蛋白具有一定的乳浊液稳定性。  相似文献   

9.
本文以葵花籽粕蛋白粉为原料,获取双酶酶解葵花籽粕蛋白制备抗氧化活性多肽的最优工艺。分别采用碱性蛋白酶等七种蛋白酶对葵花籽粕蛋白进行酶解,以抗氧化性及水解度为指标对酶制剂进行筛选。以抗氧化性为指标,通过单因素及响应面法对酶解条件进行优化,获取最佳酶解工艺。结果表明,碱性蛋白酶和木瓜蛋白酶为最适酶制剂且最佳酶解工艺为:p H7.6、复合酶比例为2.5∶1、底物浓度2%、[E]/[S]为2%、酶解温度50℃、酶解时间200min,在此条件下,葵花籽粕多肽对O-2·和·OH清除能力分别为68.06%和50.12%。   相似文献   

10.
试验以ACE抑制率为指标,通过单因素和正交试验确定酶解法制备葵花籽粕ACE抑制肽的最优工艺。结果表明:碱性蛋白酶制备葵花籽粕ACE抑制肽的最佳工艺为:溶液p H 8,加酶量7%,水浴温度55℃,酶解时间2 h。葵花籽粕ACE抑制率为85.49%±0.80%。  相似文献   

11.
沙棘籽粕蛋白的功能性质研究   总被引:1,自引:0,他引:1  
以沙棘籽粕为原料,采用碱提酸沉法制备沙棘籽粕蛋白,并对其溶解性、水合能力、吸油能力、乳化性和乳化稳定性、起泡性和泡沫稳定性等功能性质进行研究.结果表明:沙棘籽粕蛋白的功能性质受pH、温度、盐离子浓度等环境因素影响大,在等电点pH 5.0附近时功能性质数据均最低.  相似文献   

12.
醇洗法葵花籽浓缩蛋白制备工艺及其功能特性的研究   总被引:1,自引:0,他引:1  
对醇洗法葵花籽浓缩蛋白制备工艺及其功能特性进行了研究。通过正交试验 ,获取了最佳的工艺参数。实验结果表明 :采用 95 %乙醇溶剂两次浸洗 ,料液比分别为 1∶15和 1∶10 ,每次浸洗 4 0min ,pH为 4 5 ,温度为 5 0℃ ,可获得质量和功能性较好的浓缩蛋白产品  相似文献   

13.
对从葵花籽粕中提取绿原酸和葵花籽分离蛋白的制备工艺进行了研究。通过实验,获得了提取绿原酸和蛋白质的最佳工艺参数。采用50%乙醇,料液比1∶12,浸提1.5h,温度50℃,pH4.0首先提取绿原酸,然后用1mol/LNaCl溶液,料液比1∶10,时间1h,温度50℃,pH9.0提取葵花籽分离蛋白。   相似文献   

14.
葵花籽粕是葵花籽提油后的副产品。葵花籽粕蛋白品质优,各氨基酸组成平衡,此外葵花籽粕中还含有绿原酸、黄酮等多种活性物质,营养价值高,具有广阔的应用前景。从葵花籽粕作为原料提取有效成分及作为饲料用原料两方面对葵花籽粕资源的综合利用情况进行了阐述,以期为葵花籽粕的进一步开发利用提供参考。  相似文献   

15.
葵花籽粕的综合利用   总被引:7,自引:0,他引:7  
对从葵花籽粕中提取绿原酸和葵花籽分离蛋白的制备工艺进行了研究。通过实验,获得了提取绿原酸和蛋白质的最佳工艺参数。采用50%乙醇,料液比1∶12,浸提1.5h,温度50℃,pH4.0首先提取绿原酸,然后用1mol/LNaCl溶液,料液比1∶10,时间1h,温度50℃,pH9.0提取葵花籽分离蛋白。  相似文献   

16.
采用柠檬酸-磷酸氢二钠缓冲液对人参果中可溶性蛋白进行提取,以单因素实验考察料液比、温度、浸提时间、pH等因素对人参果可溶性蛋白提取率的影响。在此基础上通过四因素三水平正交实验设计,并对其提取蛋白功能性质进行了初步研究。结果确定了缓冲液浸提最佳工艺条件为:料液比4:1,温度25℃,浸提时间120min,pH=6;在此最佳工艺下,人参果可溶蛋白提取率可达24.64%。其中料液比对提取率的影响达到了显著水平(p<0.05)。人参果可溶性蛋白等电点在pH=10左右,在此条件下,蛋白的溶解性、起泡能力、乳化性最小。蛋白的吸水性在3.5~5.0mL/g左右,吸油性在0.6~1.8g/g之间,最小胶凝度为7.5mg/mL。   相似文献   

17.
采用柠檬酸-磷酸氢二钠缓冲液对人参果中可溶性蛋白进行提取,以单因素实验考察料液比、温度、浸提时间、pH等因素对人参果可溶性蛋白提取率的影响。在此基础上通过四因素三水平正交实验设计,并对其提取蛋白功能性质进行了初步研究。结果确定了缓冲液浸提最佳工艺条件为:料液比4:1,温度25℃,浸提时间120min,pH=6;在此最佳工艺下,人参果可溶蛋白提取率可达24.64%。其中料液比对提取率的影响达到了显著水平(p<0.05)。人参果可溶性蛋白等电点在pH=10左右,在此条件下,蛋白的溶解性、起泡能力、乳化性最小。蛋白的吸水性在3.5~5.0mL/g左右,吸油性在0.6~1.8g/g之间,最小胶凝度为7.5mg/mL。  相似文献   

18.
以低温花生粕为原料,利用碱溶酸沉法提取花生分离蛋白,继而制备花生蛋白饮料,考察自制花生蛋白饮料的稳定性,并研究其氮溶指数、乳化活性及乳化稳定性等功能特性。结果表明,最佳工艺条件为pH 9.5、碱提温度55℃、料液比1∶11(g/mL)、提取时间2.5 h,此条件下花生分离蛋白提取率可达90.25%。十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析显示,其中包含花生蛋白所有特征条带。花生蛋白饮料的平均粒径(D[4,3])为4.31μm,稳定性分析仪测出粒子动态变化斜率(Slope)值为26.66%/h。低温花生粕制备的花生蛋白饮料具有良好的稳定性,这为花生粕高值化利用提供了新方向。  相似文献   

19.
为制备低钠盐含量的葵花籽粕蛋白血管紧张素转换酶抑制肽(ACEI抑制肽),建立了以Ca(OH)2溶液调节酶解反应pH值的制备工艺并进行了工艺参数优化。以蛋白水解度、产物ACE抑制率和苦味值为评价指标通过选酶试验从6种商业蛋白酶中确定胰蛋白酶为水解用酶。通过对葵花籽粕蛋白酶解试验,发现在其他酶解条件相同情况下,以Ca(OH)2调节酶解pH值的葵花籽粕水解多肽的ACE抑制率和水解度优于NaOH调节的,而苦味值相近。通过对底物浓度、加酶量、pH、温度和时间进行单因素试验和对时间、温度、pH等因素进行的正交优化试验,确定用Ca(OH)2调节酶解pH值的制备葵花籽粕蛋白ACEI抑制肽工艺参数为:底物的质量浓度为3.5%,加酶量2.85%(E/S),pH7.5、温度45℃和酶解时间5min,所得ACEI抑制肽产品的IC50值为6.06mg/mL。  相似文献   

20.
本研究采用微滤-纳滤二级膜分离的方法对牡丹籽粕中的黄酮类化合物进行分离提纯。通过单因素实验研究料液比、提取温度、乙醇体积分数和提取时间对总黄酮提取量的影响,在单因素的基础上采用响应面法对提取工艺进行优化及验证。选用聚偏二氟乙烯(PVDF)、聚醚砜(PES)、聚四氟乙烯(PTFE)、聚丙烯(PP)、混合纤维素(MCE)、聚丙烯腈(PAN)、水系醋酸纤维(CA)和聚酰胺(PA)8种材料微滤膜对牡丹籽粕黄酮类化合物(PSMF)提取液进行初级分离。纳滤膜为实验室自制的有机硅/PA复合膜。结果表明,PSMF最佳的提取条件为料液比1:15 g/mL,提取温度50 ℃,乙醇体积分数为70%,提取时间为30 min,PSMF提取量为(240.28±2.25)μg/mL。将粗提液稀释10倍用于比较8种不同微滤膜对于PSMF粗提液的过滤效果,发现PA膜具有较好的分离效果,复合膜对PSMF存在较好的纯化效果,且分离后黄酮水溶性提升至90%以上。经过800 ℃煅烧之后,原料液的残余质量为1.43%,PA膜分离液的残余质量为0.76%,BTESE/PA复合膜降至0.26%,杂质更少纯度较高。对比其分离前后的抗氧化活性,分离后的·OH、DPPH·清除率以及还原力有所提升,O2·清除率由79.94%下降至64.82%。本研究对牡丹籽粕中的活性成分进行分析,PSMF是一种新型的植物黄酮资源,组成丰富,具有一定的研究空间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号