共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
描述了Job-shop调度问题,研究遗传算法和蚁群算法在解决Job-shop问题中的优点和不足,融合遗传算法和蚁群算法设计了遗传蚁群算法以求解Job-shop调度问题,并对算法进行了仿真实验,通过与遗传算法、蚁群算法及已有的遗传算法和蚁群算法的融合算法结果的对比,验证了该算法的有效性。 相似文献
3.
旅行商是应用广泛的优化组合问题,采用蚁群和遗传混合算法解决旅行商问题,利用遗传算法的交叉、变异机制解决蚁群算法易出现局部最优解的问题,将混合算法在VBA环境调试运行。混合算法与蚁群算法、遗传算法仿真数据比较,混合算法具有较好改进效果。 相似文献
4.
根据蚁群算法与模拟退火算法的特性,提出了求解旅行商问题的混合算法.由模拟退火算法生成信息素分布,然后由蚁群算法根据累计更新的信息素找出若干组解,再经过模拟退火算法在邻域内找另外一个解的操作,得到更有效的解.与模拟退火算法、标准遗传算法、蚁群算法和随机初始化的蚁群算法进行比较,4种混合算法效果都比较好,策略D的混合算法效果最好. 相似文献
5.
针对原有的遗传蚁群混合算法收敛速度慢、运行时间长等缺陷,提出了一种新混合算法,该算法从蚁群中选取部分优良个体采用遗传算法寻优,所选个体数目随迭代次数自适应变化,同时,对算法中的交叉、变异操作以及赋值等方面进行了一些改进。仿真结果表明,该算法在搜索能力、收敛速度以及程序运行时间方面都有明显的提高,由此证明了该算法的有效性。 相似文献
6.
遗传算法在蚁群算法中的融合研究 总被引:3,自引:1,他引:3
提出一种新的求连续空间最优值的蚁群算法.结合遗传算法和蚁群算法的各自优点以及两种算法融合的基础,提出遗传算法融入到蚁群算法的两种新策略:第一种策略是先利用遗传算法具有比较强的全局搜索能力,在大范围内寻找一组解,然后以此为基础,用蚁群算法快速寻找最优解X*best;另一种策略是利用遗传算法的交叉操作产生蚁群算法的新的旅行路径,以此提高蚁群算法的全局搜索能力.用上述两种策略构造了两个基于遗传算法的混合蚁群算法.文中用测试函数Rosenbrock和Shubert从收敛速度、命中率、计算精度等方面验证了混合蚁群算法的正确性. 相似文献
7.
提出了一种融合蚁群系统、免疫算法和遗传算法的混合算法。将免疫算法和遗传算法引入到每次蚁群迭代的过程中,利用免疫算法的局部优化能力和遗传算法的全局搜索能力,来提高蚁群系统的收敛速度。该算法通过遗传算法的选择、交叉、变异操作和免疫算法的自适应疫苗接种操作,有效地解决了蚁群系统的易陷入局部最优和易退化的缺点。通过对旅行商问题的仿真实验表明该算法具有非常好的收敛速度和全局最优解的搜索能力。 相似文献
8.
遗传算法(Generation Algorithm, GA)和蚁群算法(Ant Colony Optimization, ACO)都是解决组合优化问题的强有力算法。特别是近几年的研究表明,蚁群算法具有极强的鲁棒性和求最优解的能力。本文在分析这两种算法的特点基础上,通过实例验证它们在解决TSP问题上各自的优缺点,并给出做进一步研究的建议。 相似文献
9.
蚁群算法(ACA)与遗传算法(GA)都属于仿生型优化算法,是解决组合优化问题的强有力工具,并都分别成功应用于旅行商问题(TSP)问题中。本文通过实验验证了两种算法在解决TSP问题上各自的优缺点,并给出了未来的进一步研究方向。 相似文献
10.
原对偶遗传算法(PDGA)较好地保持了种群的多样性和较强的稳定性,改善了在搜索空间里的搜索能力,使搜索更为有效,但没有利用系统中的反馈信息,导致无为的冗余迭代,求解效率不高。而蚁群算法是通过信息素的累积和更新来收敛于最优路径,具有分布、并行、全局收敛能力,但是搜索初期信息素匮乏,导致算法速度慢。通过将两种算法进行融合,克服两种算法各自的缺陷,优势互补,形成一种全局寻优性能好,稳定性强,效率高的启发式算法,通过仿真计算,表明融合算法的性能优于遗传算法,原对偶遗传算法和蚁群算法。 相似文献
11.
基于混合蚁群遗传算法的Agent联盟求解 总被引:4,自引:1,他引:3
针对混合蚁群遗传算法容易融合时机过早或过晚、种群进化经历的代数过多、效率低等问题,首先改进了蚁群算法,并将改进的蚁群算法和遗传算法结合,应用于Agent联盟求解.提出了基于混合蚁群遗传算法的Agent联盟求解算法(Hybrid Ant Colony and Genetic Algorithm,HAGA),算法的核心是动态寻找两个算法的衔接点,在该点左侧使用遗传算法,右侧使用蚁群算法.与其他传统算法的实验比较,证明了该算法在求解联盟的最优解的时问和精度上都有较高的效果.把HAGA应用于RoboCup 2D龙队客户端程序中,使用比赛分析工具软件SoccerDoctor对比赛结果进行了统计分析,结果显示龙队在诸多技术参数方面均占有明显优势. 相似文献
12.
为了解决单一算法求解Job Shop调度问题存在的不足,该文提出了一种混合算法,将蚁群算法用于全局搜索。针对蚁群算法易于陷入局部最优的情况,提出了一种基于关键工序的邻域搜索方法,将使用此邻域搜索方法的TS算法作为局部搜索策略。利用TS算法较强的局部搜索能力,提高了蚁群算法的优化能力,达到改善Job Shop调度问题解的质量。实验结果表明,混合算法在较短的时间内,找到了FT10、LA24、LA36等典型benchmarks问题的最优解,得到的makespan的平均值较并行遗传算法(PGA)和TSAB算法均有所提高。 相似文献
13.
王连山 《电脑编程技巧与维护》2009,(24):18-21
优化算法主要包括遗传算法、蚁群算法、禁忌搜索算法。这些算法主要是解决优化问题中的难解问题。由于这些算法在求解时不依赖于梯度信息,因而特别适用于传统方法解决不了的大规模复杂问题。本文介绍了上述几种算法的基本思想,阐述了它们的特点并进行比较,提出了今后研究的方向。 相似文献
14.
基于遗传算法的混合蚁群算法 总被引:1,自引:0,他引:1
提出了一种新的求连续空间最优值的蚁群算法。结合遗传算法和蚁群算法各自的优点以及两种算法融合基础,提出了遗传算法融入到蚁群算法融合中的两种新策略,第一种策略是先利用遗传算法具有比较强的全局搜索能力,在大范围内寻找一组解,然后以此为基础,用蚁群算法快速寻找最优解X*best;另一种策略是利用遗传算法交叉操作产生蚁群算法中的新旅行路径,以此提高蚁群算法的全局搜索能力。用上述策略构造两个基于遗传算法的混合遗传算法。用测试函数Rosenbrock和测试函数Shubert验证了混合蚁群算法的正确性。 相似文献
15.
为了改进蚁群优化算法的收敛速度,研究了一种基于粗粒度模型的并行蚁群优化算法,该算法将搜索任务划分给q个子群,由这些子群并行地完成搜索,可使搜索速度大幅度提高。实验结果表明,用该算法求解TSP问题,收敛速度比最新的改进算法快百倍以上。 相似文献
16.
17.
遗传算法和蚁群算法在HP模型中已经有了大量的研究及成果,蚁群算法具有分布式并行全局搜索能力,通过信息素的积累和更新收敛于最优路径上,但初期信息素匮乏,求解速度慢。提出了一种先用遗传算法生成信息素分布,再利用蚁群算法求优化解的新的混合算法。将该算法用于二维HP模型中,计算结果显示该算法在寻优能力和收敛速度上都比单一的遗传算法和蚁群算法有所提高。 相似文献
18.
针对设计高维模糊控制器过程中会遇到的“规则爆炸”问题,利用蚁群算法进行控制规则的过滤简化。为了用尽量少的规则得到尽可能好的控制效果,利用蚁群算法在饵决组合优化问题中的强大优势,在已有的完备规则中优选出若干条规则嵌人模糊控制器。采用带有时间窗口的蚁群算法去克服遗传算法优选模糊控制规则时可能产生的规则不连续的问题。该文还从遗传算法和蚁群算法工作机制的角度分析了对这两种算法加入约束条件的可操作性。以单级倒立摆控制系统为对象进行仿真研究,最后的仿真结果表明该文方法可以使模糊控制规则具有更好的简化效果和鲁棒性,并能具有好的控制效果。 相似文献
19.
朱献文 《计算机光盘软件与应用》2011,(13)
本文主要以我国的智能交通系统的组成为出发点,结合蚁群算法在我国智能交通系统中的应用现状,分析了其作用意义,对于今后进一步的发展给出了初步的建议和看法。 相似文献
20.
RNA二级结构预测是生物信息学的重要研究领域.本文提出一种新的基于混合蚁群遗传算法的RNA二级结构预测方法.充分利用茎区和茎区之间的关系信息和累积的信息,通过蚁群算法产生初始种群和新的个体,进而替换遗传算法中的变异算子.构造蚁群算法中的启发式信息、初始信息素矩阵、下一茎区的选取规则和信息素的更新机制,给出遗传算法中交叉... 相似文献