首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
根据TCAP氢同位素分离原理及系统小型化要求,设计了一套小型氢同位素分离装置。采用分离柱外室中螺旋型电阻加热器对Pd/K分离柱进行加热,利用低温恒温槽中的低温无水乙醇在外室中循环冷却分离柱。采用西门子PLC模块,根据程序设定对TCAP分离过程进行自动控制。在参数优化的条件下,研究了全回流及生产模式下的分离效率。研究发现,设计的小型氢同位素分离系统实现了稳定的分离柱加热-冷却循环,循环时间为0.25 h。在生产模式下,由氘纯度为80%的原料气可分离出氘纯度99.5%产品气,生产效率可达8.7 mL/h。低氘含量H-D混合气(D%=20%)同样能实现明显的氘浓缩效果(产品气D含量达99.0%)。  相似文献   

2.
《核技术》2015,(5)
在惯性约束聚变氘氚冷冻靶制备中,对氘氚原料气中氕含量有严格限制。为控制少量燃料中氕含量,有必要开展相关氢同位素分离研究及工程研制。根据热循环吸附(Thermal Cycling Absorption Process,TCAP)原理及前期冷实验数据,研制了一套小型纯化热实验系统。系统内配置了一根长2 m、外径6.4 mm的钯/硅藻土填充柱用于对氕的过滤。按照纯化工艺设计,占总吸附量10%的原料气从填充柱一端输入,经过一次加热冷却循环后从柱另一端输出,氕在色谱柱内累积,进而实现原料气的纯化。经过纯化工艺初步探索,连续输入33次原料气后,柱内氕含量由12%累积到了52%,产品气中氕含量由12%降至3%,氘氚燃料回收率为82.5%,实现了柱内氕的有效富集,以及氘氚气体中氕的有效过滤。  相似文献   

3.
在自制低温精馏氢同位素装置上进行了H-D分离的初步实验.结果表明,以D/H比为1.4×10-4的氢气为原料,进料流量5 mol/h,运行120h后,再沸器的D/H比达1.27×10-2;增加原料气氘浓度,其浓集效果明显提高.随着再沸器中氘浓度增加,柱顶氘浓度增加,脱氘率降低.全回流实验下,再沸器加热功率增加,脱氘率增加,但造成柱压力明显增加.为控制精馏过程操作压力,选择适当的再沸器加热功率是必要的.  相似文献   

4.
氘气中氢同位素的低温气相色谱法测定   总被引:2,自引:0,他引:2  
针对高纯氘气中H2、HD与D2等氢同位素气体间不易分离分析的特点,以5A分子筛微填充石英毛细管色谱柱,在-95℃下对氢同位素进行分离,以气相色谱-脉冲放电氦离子化检测器对氢同位素进行分析。研究建立的H2、HD与D2等同位素气体测定方法精密度小于15%,最小检出摩尔分数为1×10-6。  相似文献   

5.
低温循环色谱法(CCC)是一种有效的氢同位素分离方式。在升级改造后的低温色谱分离装置上开展了H2/HD体系的分离研究。结果表明:原始氘丰度为1.4×10-4的高纯氢经过CCC 4个流程后,氘丰度达到1.173×10-3;为获得最佳色谱柱柱效,CCC的进样量控制在组分峰的容量因子下降10%时较为合适;CCC的双柱间可互相充当解吸柱与接收柱的角色,在柱结构与程序升温条件相同的前提下,双柱间分离效果的差异可能是进样点的选择和进样压力的不同造成的,与进样时间无关。  相似文献   

6.
双柱周期逆流法分离氢同位素   总被引:1,自引:0,他引:1  
将具有正、反氢同位素效应的2种贮氢材料Pd和LaNi4.7Al0.3结合,组成双分离柱,测试了原料气氘原子摩尔分数为0.5和0.1的2种混合气体的流出曲线,并进行了周期逆流方式的分离实验。实验结果表明,该分离方法具有较高的分离效率,产品气的氘原子摩尔分数一般大于0.995。改进方式后分离氘原子摩尔分数为0.1的原料气,产品气的最大氘原子摩尔分数为0.998,最大氘富集比为9.98,氘的回收率为92.5%,尾气中氢原子摩尔分数大于0.996,全分离因子大于120 000。  相似文献   

7.
采用双钯柱自置换色谱法建立了1套氘浓缩实验装置。研究并讨论了该装置对氘的富集效果。实验结果表明:氘丰度为2.0%和5.0%的样品经富集后,最大氘丰度分别达到31.6%和67.3%。该装置结构简单、操作方便,适宜对低氘丰度的氢同位素气体进行有效富集。  相似文献   

8.
低温精馏氢同位素分离全回流模式研究   总被引:2,自引:1,他引:1  
为探求全回流模式下低温精馏氢同位素分离过程中有关操作参数的内在联系,研究了再沸器加热功率对脱氘率、床层压降、液氢液位等的影响。当再沸器加热功率从5W增加到12.4W时,脱氘率从88%增加到99.6%,脱氘率与再沸器加热功率基本呈线性关系。随再沸器加热功率的增加,液氢液位下降,床层压降增加,但在该功率范围内未出现液泛现象。随加热功率增加,精馏柱操作压力从100kPa升高到190kPa,冷凝器和冷头为提供更多冷量而温度降低。  相似文献   

9.
在氢同位素分离中,通常采用多柱级联工艺实现微量氘或氚的浓集。文章提出了三柱级联分离H2/HD的设计工艺和操作模式,获得了3根精馏柱的分离行为。在合适的操作模式下,三柱级联将HD浓缩了20×10×10倍,表明采用多柱级联可非常有效地浓缩微量组分。进一步研究了压力和回流比等因素对分离性能的影响。压力从0.06MPa增加到0.15MPa,脱氘率从99.79%降到99.44%。回流比从3增长到5,脱氘率从99.67%升到99.81%。  相似文献   

10.
低温制备气相色谱法分离氢同位素   总被引:3,自引:1,他引:3  
介绍了采用低温制备气相色谱法以Al2O3装填分离柱进行氢同位素分离的装置。研究了氢同位素分离色谱柱(Al2O3分离柱)的制备和操作步骤,并对其分离效果进行了讨论。实验结果表明:经分离、净化后,氘纯度可达99.9%以上。该装置具有结构简单、操作费用低、一次性投资少等优点,在那些对氢同位素纯度要求高,用量小的部门或实验室有良好的应用前景。该装置不仅可用于氢氘分离,还可用于氘氚分离。  相似文献   

11.
热循环吸附法分离氕、氘的研究   总被引:1,自引:1,他引:0  
对热循环吸附法(TCAP)全回流模式和生产模式下的氕 氘分离实验进行了研究。全回流模式下,主要考核了初始进料比、冷/热循环温度、进料位置对分离效果的影响。结果表明,原料气体从分离柱中部进料时,初始进料比相对越大,冷/热循环温差越大,分离效果越好;而从回流柱进料时,分离效果相对更好。在几组实验中,回流柱初始进料为90%、冷/热循环温度分别为56 ℃/290 ℃的一组效果最好。生产模式下,由于分离柱中气阻较大,有可能影响氕、氘的分离效果,这部分实验还有待继续进行。  相似文献   

12.
低温精馏氢同位素分离影响因素研究   总被引:6,自引:1,他引:6  
夏修龙 《核技术》2006,29(3):221-224
本文系统研究了低温精馏氢同位素分离中总板数、进料位置、回流比、采出率等操作条件对系统分离性能的影响,获得了精馏柱上的浓度和温度分布.随着进液位置向底端移动,再沸器和冷凝器中HD浓度均减小;随着回流比的增大,再沸器和冷凝器中HD浓度均减小;顶端采出率增大,再沸器中HD浓度明显增大;在相同的总板数下,H2/HD和D2/DT两个体系的分离特性明显有差别.  相似文献   

13.
研究建立了1座采用一氧化碳低温精馏分离稳定同位素13C的试验装置,精馏塔填料层高17.5m,其中,精馏段15m,提馏段2.5m,塔内径为45mm。首先利用试验结果对计算机模拟手段进行验证,在此基础上,采用计算机模拟代替试验,进行试验装置操作条件的优化设计。综合分析了塔压、进料量、回流比、出料量、再沸器功率等对产品的影响,通过计算机模拟结合均匀试验设计的数字试验方法,实现了试验装置的优化设计。结果表明,在再沸器功率为250W、塔压为54kPa、回流比为84时,可达到已建试验装置的最优化操作。本研究所采用的计算机模拟结合试验设计手段可应用到13C的产业化设计以及推广至传统精馏过程的优化设计中。  相似文献   

14.
夏修龙 《同位素》2009,22(1):0-4
为研究电解精馏级联氢同位素分离过程的规律性,建立了电解-精馏级联的微分模型,计算了H2/HD系统的分离行为,并获得了电解和精馏过程中系统的浓集行为,即,电解池中HDO摩尔分数从2.88×10^-4增长到8.35×10^-4精馏柱再沸器中HD摩尔分数达到0.033。随时间的延长,脱氘率下降,在精馏柱上HD的摩尔分数整体抬升。进一步研究了回流比对脱氘率的影响,结果显示,回流比为3~7时,平均脱氘率可达0.9828~0.9973。实验结果表明,电解-精馏级联分离氢同位素有明显的浓集效应。  相似文献   

15.
低温精馏法分离碳同位素(12CO/13CO)的分离系数仅为1.007,且分离操作工况苛刻,富集平衡时间长,为降低工业化装置运行风险,实现13C同位素富集的动态过程理论预测是工业化技术研究中亟需解决的问题。为此,本文通过采用Aspen Dynamics模拟研究CO低温精馏分离碳同位素的动态过程,获取13C同位素在全回流、浓缩富集、连续精馏操作条件下的丰度分布等值图,实现13C同位素在时间和空间两个维度内丰度变化过程的可视化。将上述操作条件下的动态模拟值与试验值进行对比分析,结果显示,两者吻合较好,且富集平衡时塔底13C丰度和富集平衡时间的相对误差均在15%以下,验证了所建立的低温精馏分离13C同位素动态模拟计算方法的准确性,可进一步用于高丰度13C同位素生产装置中丰度变化过程的理论预测。  相似文献   

16.
The carbon isotope (12CO/13CO) separation has a separation coefficient of only 1.007, which has typical characteristics of severe separation conditions and long equilibrium time. In order to reduce the operational risk of industrial devices, the theoretical prediction of the dynamic process of13C isotope enrichment is an urgent problem to be solved in industrial technology research. Therefore, the dynamic simulation of carbon isotope separation by CO cryogenic rectification was carried out by using Aspen Dynamics. Through the simulation, the abundance distribution of13C isotope was obtained under the conditions of total reflux, concentration and continuous rectification operation, and the visualization of the abundance change of the13C isotope in the two dimensions of space and time was realized. On the other hand, comparing the dynamic simulation values with the experimental data, the results show that they are agree well, and the relative errors of the enrichment equilibrium abundance and equilibrium time are both less than 15%, which indicate that the accuracy of the dynamic simulation calculation method of13C isotope for cryogenic rectification separation is verified, which can be further used to theoretically predict the abundance enrichment process in the production plant of high abundance13C isotope.  相似文献   

17.
萃取法分离锂同位素有望替代汞齐法消除汞害,但需多级萃取才能获得高丰度同位素,采用离心萃取机替代萃取澄清槽形成萃取级联系统可提升分离效率。基于萃取法分离锂同位素、离心萃取分离原理和级联理论,借鉴气体离心级联分离同位素的方法,引入分流比概念,建立了离心萃取级联分离锂同位素单级、多级的数学模型和级联的平衡时间模型,对离心萃取级联分离锂同位素进行计算分析。离心萃取级联是一种类似全回流矩形级联形式,取料量对级联级数有着很大的影响,级联存在最大取料丰度限制,级联平衡时间受到目标丰度和离心萃取机级停留时间(处理能力)影响,采用多步法级联可有效减少平衡时间。该数学模型可指导工艺的设计,为下一步的产业化应用提供理论依据。  相似文献   

18.
~(13)C同位素低温精馏过程动态模拟   总被引:2,自引:2,他引:0  
为深入了解CO低温精馏分离13C系统的动态特性,建立了系统的动态模型,借助软件Aspen Dynam-ics对该系统的全回流、开车以及物料量发生扰动过程进行了动态模拟。塔釜热负荷和塔釜持液量对全回流过程的影响结果显示,全回流动态浓缩过程耗时约1周,稳定时塔釜13C16O摩尔分数约为3.9%。模拟研究结果显示,先浓缩后稳态出料的开工方案可大幅缩减装置动态开工时间,产品摩尔分数达到14.5%,耗时约需38.6 d;而对应的同时稳态进出料开车方案平衡时间需127.7 d;开发持液量低的填料可进一步缩短开工时间,降低产品成本。对进料扰动的计算表明,本工作采用的分离装置对物料量的波动具有较强的抗干扰能力,波幅50%、时间为4 h的进出料量波动对产品品质的影响可忽略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号