首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of Nb2O5 and ZnO addition on the dielectric properties, especially the quality factor, of (Zr0.8Sn0.2)TiO4 (ZST) ceramics were investigated in terms of the sintered density acquired by the zinc. For ZST ceramics with 2 mol% added ZnO, the relative density of the samples decreased with >0.5 mol% addition of Nb2O5. On the other hand, for samples with 6 mol% added ZnO, the relative density remained >97%, even when the amount of Nb2O5 was increased to 2.0 mol%. When >0.5 mol% Nb2O5 was added, both the quality factor and the dielectric constant exhibited similar trends with sintered density. The ZST ceramics with 6 mol% added ZnO, especially, still manifested a quality factor >40 000 and a dielectric constant of 37, even when the amount of Nb2O5 was increased, values that are not explainable by the previously suggested electronic defect model.  相似文献   

2.
3.
4.
Based on cause and effect rather than experiment data, zirconium hydroxide (Zr(OH)4· n H2O) is always considered as hydrous zirconia (ZrO2· n H2O). With the aid of nitric acid, XPS, XRD, XPF, and TGA, some differences between them have been confirmed. It is found that in contrast to zirconium hydroxide (the binding energy of zirconium = 183.6 eV), hydrous zirconia does not dissolve in nitric acid. The chemical properties of zirconium (181.8 eV) in hydrous zirconia are similar to those in zirconia (182.2 eV for the binding energy of zirconium), and the weight loss of hydrous zirconia is 21.5%, different from 32.19%, the weight loss of zirconium hydroxide. According to the experimental data, a structure for hydrous zirconia is proposed and then the different phenomena are explained.  相似文献   

5.
Prediction of Rare-Earth A2Hf2O7 Pyrochlore Phases   总被引:1,自引:1,他引:0  
Within the series of A2O3-HfO2 phase diagrams (A ranges in cationic radius from Lu3+ to La3+), only those from Gd2Hf2O7 to La2Hf2O7 are known to exhibit a pyrochlore phase field. For A cations smaller than Gd3+, only a disordered fluorite phase field exists. Disorder energies for the entire series of pyrochlore oxides have been determined via atomistic simulation. These energies can be correlated to the order-disorder temperatures from the phase diagrams. Consequently, we predict the existence of hitherto unobserved pyrochlores: Dy2Hf2O7, Ho2Hf2O7, and Er2Hf2O7.  相似文献   

6.
Ba2YCu3O7 ceramics doped with either Pr or U at 0.000 17 to 1.7 wt% levels have been prepared. For each sample J c (magn) has been measured with a vibrating sample magnetometer. No improvement in J c was found for either dopant and it is concluded that neither provides the clusters necessary to produce suitable pinning sites.  相似文献   

7.
The vaporization of the samples of the compositions Ga2O3+ LaGaO3, LaGaO3+ La4Ga2O9, and La4Ga2O9+ La2O3 was investigated using Knudsen effusion mass spectrometry in the temperature range 1494–1937 K. The partial pressures of the gaseous species O2, Ga, GaO, Ga2O, and LaO were determined over the samples investigated. The equilibrium partial pressures were used for the calculation of the thermodynamic activities of the components at 1700 K. Gibbs energies of formation of LaGaO3( s ) and La4Ga2O9( s ) at 1700 K from the component oxides were derived from the thermodynamic activities as −46.4 ± 4.7 and −99.2 ± 7.9 kJ·mol−1, respectively. The results were compared with the literature data obtained using other methods.  相似文献   

8.
Electrical properties of CeO2 thin films of different Y2O3 dopant concentration as prepared earlier were studied using impedance spectroscopy. The ionic conductivities of the films were found to be dominated by grain boundaries of high conductivity as compared with that of the bulk ceramic of the same dopant concentration sintered at 1500°C. The film grain-boundary conductivities were investigated with regard to grain size, grain-boundary impurity segregation, space charge at grain boundaries, and grain-boundary microstructures. Because of the large grain boundary and surface area in thin films, the impurity concentration is insufficient to form a continuous highly resistive Si-rich glassy phase at grain boundaries, such that the resistivity associated with space-charge layers becomes important. The grain-boundary resistance may originate from oxygen-vacancy-trapping near grain boundaries from space-charge layers. High-resolution transmission electron microscopy coupled with a trans-boundary profile of electron energy loss spectroscopy gives strong credence to the space-charged layers. Since the conductivities of the films were observed to be independent of crystallographic texture, the interface misorientation contribution to the grain-boundary resistance is considered to be negligible with respect to those of the impurity layer and space-charge layers.  相似文献   

9.
Our analysis of the microwave dielectric properties of the δ-Bi2O3–Nb2O5 solid solution (δ-BNss) showed a continuous increase in permittivity and dielectric losses with an increasing concentration of Nb2O5. The only discontinuity was found for the temperature coefficient of resonant frequency, which is negative throughout the entire homogeneity range but reaches a minimum value for the sample with 20 mol% Nb2O5. At the same composition there is a discontinuity in the grain size of the δ-BNss ceramics. For the sample containing 25 mol% Nb2O5 two structural modifications were observed. A single-phase tetragonal Bi3NbO7, in the literature referred to as a Type-III phase, is formed in a very narrow temperature range from 850° to 880°C. A synthesis performed below or above this temperature range resulted in the formation of the end member of the δ-BNss homogeneity range. Compared with the δ-BNss the Bi3NbO7 ceramics exhibit lower microwave dielectric losses, an increased conductivity, and a positive temperature coefficient of resonant frequency.  相似文献   

10.
11.
Intermetallic CoAl powder has been prepared via self-propagating high-temperature synthesis (SHS). Dense CoAl materials (99.6% of theoretical) with the combined additions of ZrO2(3Y) and Al2O3 have been fabricated via spark plasma sintering (SPS) for 10 min at 1300°C and 30 MPa. The microstructures are such that tetragonal ZrO2 (0.3 μm) and Al2O3 (0.5 μm) particles are located at the grain boundaries of the CoAl (8.5 μm) matrix. Improved mechanical properties are obtained; especially the fracture toughness and the bending strength of the materials with ZrO2(3Y)/Al2O3= 16/4 mol% are 3.87 MPa·m1/2 and 1080 MPa, respectively, and high strength (>600 MPa) can be retained up to 1000°C.  相似文献   

12.
Effects of Ag addition on sintering of a crystallizable CaO-B2O3-SiO2 glass have been investigated at 700°–900°C in different atmospheres. With Ag content increasing in the range of 1–10 vol%, the softening point, the densification, the onset crystallization temperature, and the total amount of crystalline phase formed of the crystallizable glass are reduced when fired in air. A bloating phenomenon is observed when the crystallizable CaO-B2O3-SiO2 glass doped with 1–10 vol% Ag is fired at 700°–900°C for 1–4 h. Fired in N2 or N2+ 1% H2, however, the above phenomena disappear completely. It is thus believed that the diffusion of Ag into the crystallizable glass, which is caused by the oxidation of Ag in air, is the root cause for the above results observed.  相似文献   

13.
Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics of pure perovskite structure were prepared by the two-stage method with the addition of 0–3.0 wt% MnO2 and their piezoelectric properties were investigated systematically. The MnO2 addition influences in a pronounced way both the crystal structure and the microstructure of the materials. The materials are transformed from the tetragonal to the rhombohedral structure, and the grain size is enhanced when manganese cations are added. The distortion of crystal structure for samples with MnO2 addition can be explained by the Jahn–Teller effect. The values of electromechanical coupling factor ( k p) and dielectric loss (tan δ) are optimized for 0.5-wt%-MnO2-doped samples ( k p= 0.60, tan δ= 0.2%) and the mechanical quality factor ( Q m) is maximized for 1.0-wt%-MnO2-doped samples ( Q m= 1041), which suggests that oxygen vacancies formed by substituting Mn3+ and Mn2+ ions for B-site ions (e.g., Ti4+ and Zr4+ ions) in the perovskite structure partially inhibited polarization reversal in the ferroelectrics. The ceramics with 0.50–1.0 wt% MnO2 addition show great promise as practical materials for piezoelectric applications.  相似文献   

14.
The microstructure of ZrO2 fine particles produced by a novel synthesis method at 450° and 950°C has been studied. The fundamentals of the synthesis method, which involves both chemical and diffusion phenomena, are presented. The method is based on mass transport through the gaseous phase between metallic zirconium and Fe2O3 powder. The mass-transporting chemical species are zirconium and iron chlorides. This article focuses on the microstructure and structure of ZrO2 particles formed by the reaction between gaseous ZrCl4 and solid Fe2O3, which is a relevant reaction step that occurs during the synthesis process. The resulting ZrO2 crystals grown on Fe2O3 particles have been analyzed using transmission electron microscopy. Microstructural characterization has been complemented by X-ray diffractometry analysis. Tetragonal-ZrO2 is produced at 450°C and monoclinic-ZrO2 single crystals are produced at 950°C.  相似文献   

15.
Er3+-doped sodium lanthanum aluminosilicate glasses with compositions of (90− x )(0.7SiO2·0.3Al2O3)· x Na2O·8.2La2O3· 0.6Er2O3·0.2Yb2O3·1Sb2O3 (in mol%) ( x = 12, 20, 24, 40, 60 mol%) were prepared and their spectroscopic properties were investigated. Judd–Ofelt analysis was used to calculate spectroscopic properties of all glasses. The Judd–Ofelt intensity parameter Ω t ( t = 2, 4, 6) decreases with increasing Na2O. Ω2 decreases rapidly with increasing Na2O while Ω4 and Ω6 decrease slowly. Both the fluorescent lifetime and the radiative transition rate increase with increasing Na2O. Fluorescence spectra of the 4 I 13/2 to 4 I 15/2 transition have been measured and the change with Na2O content is discussed. It is found that the full width at half-maximum decreases with increasing Na2O.  相似文献   

16.
(In0.67Fe0.33)2O3 with the bixbyite structure was synthesized via 28 GHz microwave irradiation, using multimode microwave heating equipment. Indium sesquioxide strongly absorbs 28 GHz microwaves, and this strong coupling with microwave energy can be used to drive a reaction with iron sesquioxide. A mixture of In2O3 and α-Fe2O3 powders (In:Fe ratio of 2:1) was irradiated with microwaves at a frequency of 28 GHz. The mixture was heated to 1400°C during the microwave irradiation. The formation of a solid solution was completed within a minute, which indicated a drastic enhancement of the reaction rate. Scanning electron microscopy revealed remarkable grain growth under microwave irradiation.  相似文献   

17.
18.
A study was undertaken of the kinetics of the black Fe-Cr oxide pigment synthesis process based on the oxide constituents (Fe2O3 and Cr2O3). A kinetic model is proposed which enables correlating the degree of transformation advance, expressed as the mass fraction of the arising solid solution (of the same composition as the starting oxide mixture), with synthesis time and temperature. The model is valid for raw materials, range of starting compositions, and operating conditions similar to those used in black Fe-Cr oxide pigment processing in industry.  相似文献   

19.
Synthesis of monodispersed nanophase α-Fe2O3 (hematite) powder to be used as a red pigment in porcelains was investigated using microwave-hydrothermal and conventional-hydrothermal reactions using 0.018 M FeCl3·6H2O and 0.01 M HCl solutions at 100°–160°C. Acicular and yellow β-FeOOH (akaganite) particles 300 nm in length and 40 nm in thickness were dominantly formed at 100°C after 2–3 h, while spherical α-Fe2O3 particles 100–180 nm in diameter were preferentially formed after 13 h using a conventional-hydrothermal reaction. However, a microwave-hydrothermal reaction at 100°C led to monodispersed and red α-Fe2O3 particles 30–66 nm in diameter after 2 h without the formation of β-FeOOH particles. In this paper, the effect of microwave radiation during hydrothermal treatment at 100°–160°C on the formation yield, kinetics, morphology, phase type, and color of α-Fe2O3 was investigated.  相似文献   

20.
Axial and dilatometric thermal expansions and phase transformations were studied for solid solutions having the α-PbO2 structure in the ZrTiO4—In2O3—M2O5 (M = Sb, Ta) system with nominal formulas of Zr x Ti y In z Sb z O4 and Zr x Ti y In z Ta z O4 where x + y + 2 z = 2. With increased substitution of z , the cell volume increased, the difference in the b parameters at room temperature between those quenched from 1400° and 1000°C decreased, and the thermal expansion decreased. The axial thermal expansion of ZrTi y In z · Ta z O4 with z = 0.3 was almost identical with that of HfTiO4, and those with z = 0.4 and z = 0.45 were smaller than that of HfTiO4. Unit-cell volumes of these compound were compared with those of single oxides to make it clear that the unit-cell volume of ZrTiO4 was small anomalously and to distinguish the normal and abnormal substitution systems. These results were explained by the working hypothesis proposed for these compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号