首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

2.
Jacob Brix 《Fuel》2011,90(6):2224-2239
The aim of this investigation has been to model combustion under suspension fired conditions in O2/N2 and O2/CO2 mixtures. Experiments used for model validation have been carried out in an electrically heated Entrained Flow Reactor (EFR) at temperatures between 1173 K and 1673 K with inlet O2 concentrations between 5 and 28 vol.%. The COal COmbustion MOdel, COCOMO, includes the three char morphologies: cenospheric char, network char and dense char each divided between six discrete particle sizes. Both combustion and gasification with CO2 are accounted for and reaction rates include thermal char deactivation, which was found to be important for combustion at high reactor temperatures and high O2 concentrations. COCOMO show in general good agreement with experimental char conversion profiles at conditions covering zone I-III. From the experimental profiles no effect of CO2 gasification on char conversion has been found. COCOMO does however suggest that CO2 gasification in oxy-fuel combustion at low O2 concentrations can account for as much as 70% of the overall char consumption rate during combustion in zone III.  相似文献   

3.
The reactivity of four pulverised Australian coals were measured under simulated air (O2/N2) and oxy-fuel (O2/CO2) environments using a drop tube furnace (DTF) maintained at 1673 K and a thermogravimetric analyser (TGA) run under non-isothermal (heating) conditions at temperatures up to 1473 K. The oxygen concentration, covering a wide and practical range, was varied in mixtures of O2/N2 and O2/CO2 in the range of 3 to 21 vol.% and 5 to 30 vol.%, respectively. The apparent volatile yield measured in CO2 in the DTF was greater than in N2 for all the coals studied. Pyrolysis experiments in the TGA also revealed an additional mass loss in a CO2 atmosphere, not observed in a N2 atmosphere, at relatively high temperatures. The coal burnout measured in the DTF at several O2 concentrations revealed significantly higher burnouts for two coals and similar burnouts for the other two coals in oxy-fuel conditions. TGA experiments with char also revealed higher reactivity at high temperatures and low O2 concentration. The results are consistent with a char–CO2 reaction during the volatile yield experiments, but additional experiments are necessary to resolve the mechanisms determining the differences in coal burnout.  相似文献   

4.
The reversible equilibrium: 2Ca2SiO4 + CaO + CO2 ? Ca5(SiO4)2CO3 has been studied using F? and C?? ions as mineralizers. A pressure-temperature curve is given for the reaction in the range of CO2 pressures between 0.08 and 1 atmosphere. At these pressures, the decomposition temperatures of spurrite are 790 ± 5°C and 912 ± 5°C respectively. At a given CO2 pressure the thermal stability of spurrite is greater than that of CaCO3.  相似文献   

5.
Based on a critical analysis of the data reported in the literature and our own experimental studies relating to the melt and glass formation from compositions corresponding to 12CaO.7Al2O3 under various atmospheric conditions, the liquid structure of the melt phase and conditions for stabilization of 12CaO.7Al2O3 and 5CaO.3Al2O3 in crystalline state have been highlighted. The role of “stabilizers” like O2?, F?, Cl?, S2? for the crystalline structure of 12CaO.7Al2O3, effect of temperature and atmosphere on melt structure and properties, and conditions favouring the appearance of 12CaO.7Al2O3 and 5CaO.Al2O3 crystalline phases from the given melt have been specifically dealt with.  相似文献   

6.
Gas effects on NO reduction by NH3 over sulfated CaO have been investigated in the presence of O2 at 700–850 °C. CO2 and SO2 have reversible negative effects on the catalytic activity of sulfated CaO. Although H2O alone has no obvious effect, it can depress the negative effects of CO2 and SO2. In the flue gas with CO2, SO2 and H2O co-existing, the sulfated CaO still catalyzed the NO reduction by NH3. The in situ DRTFTS of H2O adsorption over sulfated CaO indicated that H2O generated Br?nsted acid sites at high temperature, suggesting that CO2 and SO2 competed for only the molecularly adsorbed NH3 over Lewis acid sites with NO, without influencing the ammonia ions adsorbed over Br?nsted acid sites. Lewis acid sites shifting to Br?nsted acid sites by H2O adsorption at high temperature may explain the depression of the negative effect on NO reduction by CO2 and SO2.  相似文献   

7.
Calcium-carbonate powders were coprecipitated with Al3+ and then decomposed in air and/or under a CO2 flux between 590 °C and 1150 °C. The data were analysed using a consecutive-decomposition-dilatometer method and the kinetic results were discussed according to the microstructure analysis done by N2 adsorption isotherms (78 K), SEM and FT-IR measurements. Below 1000 °C, CaCO3 particle thermal-decomposition was pseudomorphic, resulting in the formation of a CaO grain porous network. When the CaO grains were formed, the Al3+ diffused among them, producing AlO4 groups that promoted the CaO grain coarsening and reduced O2− surface sites available to CO2 adsorbed molecules to form CO32−. In pure CaO, CO32− diffused through the grain boundary, enhancing Ca2+ and O2− mobility; AlO4 groups reduced CO32− penetration and CaO sintering rate. Above 1000 °C, the sintering rate of the doped samples exceeded that of the undoped, likely because of Al3+ diffusion in CaO and viscous flow.  相似文献   

8.
采用Al2O3和MgO同时掺杂改性的方法制备了CaO-Ca3Al2O6-MgO复合钙基高温吸附CO2材料。复合钙基材料孔隙发达,活性物相为CaO,惰性骨架物相为Ca3Al2O6和MgO。Ca3Al2O6/MgO质量比偏小的材料,表面微粒粒径较小。在10%(体积分数,下同)CO2和90% N2的混合气气氛下,采用热重分析仪测量了复合钙基材料吸附CO2容量、碳化反应速率以及循环碳化(670℃)/煅烧(900℃)过程的稳定性。结果发现,复合钙基材料CaO-Ca3Al2O6-MgO具有较好的吸附CO2性能,提高Ca3Al2O6/MgO质量比,合成材料的循环稳定性较好;降低Ca3Al2O6/MgO质量比,合成材料的碳化反应速率加快,CaO转化率提高。最后,通过对不同循环次数下复合钙材料的比表面积、孔径分布、微观形貌、表面元素分布,晶相、晶粒大小进行研究分析,对合成材料的失活以及掺杂物质对烧结的抑制机理进行了讨论。  相似文献   

9.
Jacob Brix 《Fuel》2010,89(11):3373-4289
The aim of the present investigation is to examine differences between O2/N2 and O2/CO2 atmospheres during devolatilization and char conversion of a bituminous coal at conditions covering temperatures between 1173 K and 1673 K and inlet oxygen concentrations between 5 and 28 vol.%. The experiments have been carried out in an electrically heated entrained flow reactor that is designed to simulate the conditions in a suspension fired boiler. Coal devolatilized in N2 and CO2 atmospheres provided similar results regarding char morphology, char N2-BET surface area and volatile yield. This strongly indicates that a shift from air to oxy-fuel combustion does not influence the devolatilization process significantly. Char combustion experiments yielded similar char conversion profiles when N2 was replaced with CO2 under conditions where combustion was primarily controlled by chemical kinetics. When char was burned at 1573 K and 1673 K a faster conversion was found in N2 suggesting that the lower molecular diffusion coefficient of O2 in CO2 lowers the char conversion rate when external mass transfer influences combustion. The reaction of char with CO2 was not observed to have an influence on char conversion rates at the applied experimental conditions.  相似文献   

10.
Sintering compacts of carbonated hydroxyapatite (CHA) nanoparticles (3.4 wt% CO32−) in a CO2 flow (4 mL/min) proceeded at a temperature which was more than 200 °C lower than that for hydroxyapatite in air (1150 °C). During heating from RT to 1200 °C (5 K/min) the rate of shrinkage of the CHA compacts showed a maximum thrice as high as that in air at about 929 °C. The shrinkage correlates with a mass loss caused by the release of CO2 due to the thermal decomposition of CO32− ions that substitute PO43− ions in the CHA lattice. Firing the compacts in the CO2 flow at 800 and 900 °C for 2 h resulted in an additional carbonatation on the B-sites and a further decrease in the sintering temperature to 890 °C. The compacts fired in the 900-1000 °C range became almost complete ceramics with high densities and mechanical properties close to those of medical implants. Firing at temperatures above 1000 °C resulted in an additional carbonatation on the A-sites. However, this led to a material with low densities and poor mechanical properties. A supposition has been proposed that the effect of CO2 gas-activated sintering is a result of the intensification of the diffusion in the nanoparticles caused by CO2 molecules entering the bulk from the CO2 atmosphere and (or) releasing from the bulk due to the decomposition of carbonates on the B-sites in the lattice.  相似文献   

11.
H2和O2直接合成H2O2过程绿色环保,反应具有原子经济性,是最有潜力的H2O2合成新方法之一。采用等量浸渍法,将Pd负载于羟基磷灰石(HAp)载体上,得到了高分散的Pd/HAp纳米催化剂,Pd平均粒径2.5 nm。运用幂指数模型,研究该催化剂在H2O2加氢及H2和O2直接合成反应中的动力学,计算得到H2O2加氢、H2O2和H2O的生成反应的表观活化能及O2、H2表观反应级数。结果表明低温及高O2分压有利于H2O2的生成,而高H2分压则有利于H2O的生成。  相似文献   

12.
Changdong Sheng  Yi Li 《Fuel》2008,87(7):1297-1305
The present paper was addressed to mineral transformations and ash formation during O2/CO2 combustion of pulverized coal. Four Chinese thermal coals were burned in a drop tube furnace to generate ashes under various combustion conditions. The ash samples were characterized with XRD analysis and 57Fe Mössbauer spectroscopy. The impacts of O2/CO2 combustion on mineral transformation and ash formation were explored through comparisons between O2/CO2 combustion and O2/N2 combustion. It was found that, O2/CO2 combustion did not significantly change the mineral phases formed in the residue ashes, but did affect the relative amounts of the mineral phases. The differences observed in the ashes formed in two atmospheres were attributed to the impact of the gas atmosphere on the combustion temperatures of coal char particles, which consequently influenced the ash formation behaviors of included minerals.  相似文献   

13.
The transient behavior of catalytic methane steam reforming (MSR) coupled with simultaneous carbon dioxide removal by carbonation of CaO pellets in a packed bed reactor for hydrogen production has been analyzed through a mathematical model with reaction experiments for model verification. A dynamic model has been developed to describe both the MSR reaction and the CaO carbonation-enhanced MSR reaction at non-isothermal, non-adiabatic, and non-isobaric operating conditions assuming that the rate of the CaO carbonation in a local zone of the packed bed is governed by kinetic limitation or by mass transfer limitation of the reactant CO2. Apparent carbonation kinetics of the CaO pellet prepared has been determined using the TGA carbonation experiments at various temperatures, and incorporated into the model. The resulting model is shown to successfully depict the transient behavior of the in situ CaO carbonation-enhanced MSR reaction. The effects of major operating parameters on the transient behavior of the CaO carbonation-enhanced MSR have been investigated using the model. The bed temperature is the most important parameter for determining the amount of CO2 removed by carbonation of CaO, and at temperatures of 600°C, 650°C, 700°C and 750°C, the CO2 uptake is 1.43, 2.29, 3.5 and -CO2/kg-CaO, respectively. Simultaneously with the increase in CO2 uptake with increasing temperature, the corresponding amounts of hydrogen produced are 1.56, 2.54, 3.91 and -H2/kg-CaO, at the same temperatures as above. Operation at high pressure, high steam to methane feed ratio, and the decreased feed rate at a given temperature are favorable for increasing the degree of the overall utilization of CaO pellets in the reactor bed, and for lowering the CO concentration in the product.  相似文献   

14.
The effect of O2 and N2O on alkane reactivity and olefin selectivity in the oxidative dehydrogenation of ethane, propane, n-butane, and iso-butane over highly dispersed VOx species (0.79 V/nm2) supported on MCM-41 has been systematically investigated. For all the reactions studied, olefin selectivity was significantly improved upon replacing O2 with N2O. This is due to suppressing COx formation in the presence of N2O. The most significant improving effect of N2O was observed for iso-butane dehydrogenation: S(iso-butene) was ca. 67% at X(iso-butane) of 25%.Possible origins of the superior performance of N2O were derived from transient experiments using 18O2 traces. 18O16O species were detected in 18O2 and 18O2–C3H8 transient experiments indicating reversible oxygen chemisorption. In the presence of alkanes, the isotopic heteroexchange of O2 strongly increased. Based on the distribution of labeled oxygen in COx and in O2 as well as on the increased COx formation in sequential O2–C3H8 experiments, it is suggested that non-lattice oxygen species (possibly of a bi-atomic nature) originating from O2 are non-selective ones and responsible for COx formation. These species are not formed from N2O.  相似文献   

15.
The CaO-rich portions of the systems CaOA?2O3SiO2K2SO4, CaOA?2O3K2SO4, CaOA?2O3SiO2K2SO4CaSO4 and CaOA?2O3Fe2O3CaSO4K2SO4 have been studied experimentally. Schemes are presented showing phase assemblages compatible at subsolidus temperatures. Melting commences at about 825°C in assemblages containing K2SO4. Silicate, aluminate and ferrite phases are comparatively insoluble in molten alkali-rich sulphates. At clinkering temperatures, two immiscible liquids form; one is rich in K2O and sulphate, the other is a silicate liquid. Some features of vapour-liquid-solid equilibria relevant to the S cycle in cement kilns are discussed.  相似文献   

16.
High-density and fine-grained transparent hydroxyapatite (Ca10(PO4)6(OH)2: HAp) ceramics with B2O3 and Na2O addition were fabricated using pressureless sintering and pulse-current pressure sintering between 1000 and 1100 °C; the superplastic deformation of these HAp specimens was evaluated. The relative density of pure HAp compacts pulse-current pressure sintered at 1000 °C for 10 min under a pressure of 50 MPa attained 99.9% and exhibited translucency. The tensile elongation of the pure HAp specimen, which was measured at 1000 °C under a strain rate of 1.48 × 10−4 s−1, was as high as 364%. The relative density of HAp compacts with 3.0 mol.% B2O3 addition pulse-current pressure sintered under the same conditions as those of pure HAp compacts was 98.9%, whereas the grain size was as low as 0.24 μm. The elongation of HAp specimens, measured at a test temperature of 1000 °C under a strain rate of 1.48 × 10−4 s−1, was as high as 578%.  相似文献   

17.
Lian Zhang  Eleanor Binner  Chun-Zhu Li 《Fuel》2010,89(10):2703-6646
Experimental investigation of the combustion of an air-dried Victorian brown coal in O2/N2 and O2/CO2 mixtures was conducted in a lab-scale drop-tube furnace (DTF). In situ diagnostics of coal burning transient phenomena were carried out with the use of high-speed camera and two-colour pyrometer for photographic observation and particle temperature measurement, respectively. The results indicate that the use of CO2 in place of N2 affected brown coal combustion behaviour through both its physical influence and chemical interaction with char. Distinct changes in coal pyrolysis behaviour, ignition extent, and the temperatures of volatile flame and burning char particles were observed. The large specific heat capacity of CO2 relative to N2 is the principal factor affecting brown coal combustion, which greatly quenched the ignition of individual coal particles. As a result, a high O2 fraction of at least 30% in CO2 is required to match air. Moreover, due to the accumulation of unburnt volatiles in the coal particle vicinity, coal ignition in O2/CO2 occurred as a form of volatile cloud rather than individual particles that occurred in air. The temperatures of volatile flame and char particles were reduced by CO2 quenching throughout coal oxidation. Nevertheless, this negative factor was greatly offset by char-CO2 gasification reaction which even occurred rapidly during coal pyrolysis. Up to 25% of the nascent char may undergo gasification to yield extra CO to improve the reactivity of local fuel/O2 mixture. The subsequent homogeneous oxidation of CO released extra heat for the oxidation of both volatiles and char. As a result, the optical intensity of volatile flame in ∼27% O2 in CO2 was raised to a level twice that in air at the furnace temperature of 1273 K. Similar temperatures were achieved for burning char particles in 27% O2/73% CO2 and air. As this O2/CO2 ratio is lower than that for bituminous coal, 30-35%, a low consumption of O2 is desirable for the oxy-firing of Victorian brown coal. Nevertheless, the distinct emission of volatile cloud and formation of strong reducing gas environment on char surface may affect radiative heat transfer and ash formation, which should be cautioned during the oxy-fuel combustion of Victorian brown coal.  相似文献   

18.
The modification of activated carbon fibres prepared from a commercial textile acrylic fibre into materials with monolithic shape using phenolic resin as binder was studied. The molecular sieving properties for the gas separations CO2/CH4 and O2/N2 were evaluated from the gas uptake volume and selectivity at 100 s contact time taken from the kinetic adsorption curves of the individual gases. The pseudo-first order rate constant was also determined by the application of the LDF model. The samples produced show high CO2 and O2 rates of adsorption, in the range 3-35 × 10−3 s−1, and in most cases null or very low adsorption of CH4 and N2 which make them very promising samples to use in PSA systems, or similar. Although the selectivity was very high, the adsorption capacity was low in certain cases. However, the gas uptake in two samples reached 23 cm3 g−1 for CO2 and 5 cm3 g−1 for O2, which can be considered very good. The materials were heat-treated using a microwave furnace, which is a novel and more economic method, when compared with conventional furnaces, to improve the molecular sieves properties.  相似文献   

19.
This study was carried out to investigate the reaction between CO2 and materials that contain CaO under dry grinding. Chemical reagent CaO was used in this experiment, and waste concrete was also tested to examine the feasibility of CO2 sorption into it. Samples were ground in a CO2 atmosphere by a centrifugal ball mill. The reaction was measured with the constant volume method. The effects of amount of sample, the number and diameter of balls, the concentration of CO2 in the mixture of CO2 and air and the rotational speed on the CO2 sorption were examined. The amount of the CO2 sorption under grinding was larger than that without grinding. The grinding enhanced the reaction between CaO and CO2. The CO2 sorption steeply increased with time in the early stage of grinding. After that, it increased gradually. The CO2 reacted with the CaO at the surface layer of the newly exposed surface of the CaO particles during the grinding. The initial sorption rate of CO2 was related with the shear force. In the latter stage of grinding, the grinding process caused the CaO particles to agglomerate. As a result, the sorption of CO2 became slow. It was found that the waste concrete had high potential for sorption of CO2 by means of dry grinding.  相似文献   

20.
In order to increase the use of carpet wastes (pre- and/or post-consumer wastes), this work studies for the first time the preparation and characterisation of a microporous material from a commercial carpet (pile fiber content: 80% wool/20% nylon; primary and secondary backings: woven polypropylene; binder: polyethylene) and its application for CO2 capture. The porous material was prepared from an entire carpet material using a standard chemical activation with KOH and then, characterised in terms of their porous structure and surface functional groups. Adsorption of CO2 was studied using a thermogravimetric analyser at several temperatures (25-100 °C) and under different CO2 partial pressures (i.e. pure CO2 flow and a ternary mixture of 15% CO2, 5% O2 and 80% N2). In order to examine the adsorbent regenerability, multiple CO2 adsorption/desorption cycles were also carried out. The surface area and micropore volume of the porous adsorbent were found to be 1910.17 m2 g− 1 and 0.85 cm3 g− 1, respectively. The CO2 adsorption profiles illustrate that the maximum CO2 capture on the sample was reached in less than 10 min. CO2 adsorption capacities up to 8.41 wt.% and 3.37 wt.% were achieved at 25 and 70 °C, respectively. Thermal swing regeneration studies showed that the prepared adsorbent has good cyclic regeneration capacities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号