首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on hyper-chaotic systems, a novel image encryption algorithm is introduced in this paper. The advantages of our proposed approach are that it can be realized easily in one round diffusion process and is computationally very simple while attaining high security level, high key sensitivity, high plaintext sensitivity and other properties simultaneously. The key stream generated by hyper-chaotic system is related to the original image. Moreover, to encrypt each pixel, we use the sum of pixels which are located after that pixel. The algorithm uses different summations when encrypting different input images (even with the same sequence based on hyper-chaotic system). This, in turn, will considerably enhance the cryptosystem resistance against known/chosen-plaintext and differential attacks. The change rate of the number of pixels in the cipher-image when only one pixel of the original image is modified (NPCR) and the Unified Average Changing Intensity (UACI) are already very high (NPCR?>?99.80233 % and UACI?>?33.55484 %). Also, experimental results such as key space analysis, histograms, correlation coefficients, information entropy, peak signal-to-noise ratio, key sensitivity analysis, differential analysis and decryption quality, show that the proposed image encryption algorithm is secure and reliable, with high potential to be adopted for the secure image communication applications.  相似文献   

2.

This paper presents a new way of image encryption based on biologic DNA sequence operations and Cellular Neural Network (CNN), which consists of three processes; bit-substitution, key stream generation process, and diffusion process. Firstly, a plain-image is equally divided into four sub-images and a DNA sequence matrix of each sub-image is obtained. Then we employed the hamming distance (between DNA sequences) and DNA sequence operation to encrypt each DNA sub-image. The second process is a pseudo-random key stream generator based on Cellular Neural Network. The parameters and initial conditions of the CNN system are derived using a 256 bit-long external secret key by applying some algebraic transformations to the key. The original key stream is related to the plain-image which increases the level of security and key sensitivity of the proposed algorithm. In the final process, we use the chaotic sequences generated by CNN to modify the pixel gray level values and crack the strong correlations between adjacent pixels of an image simultaneously. This feature will significantly increase plaintext sensitivity. Moreover, in order to reach higher security and higher complexity, the proposed method employs the image size in key stream generation process. The experimental results reveal that the new image encryption algorithm has the advantages of large key space (2256), high security, high sensitivity (Number of Pixels Change Rate: NPCR >99.6201 %, Unified Average Changing Intensity: UACI >33.5065 %), and high entropy (> 7.9975). Also, the distribution of gray level values of the encrypted image has a semi-random behavior.

  相似文献   

3.
Karolin  M.  Meyyappan  T. 《Multimedia Tools and Applications》2021,80(21-23):32023-32040

In the digital transparent world, share the secret messages are challenged one. Visual cryptography (VC) is safer method for information transfer without any distraction by hackers. It is giving more security to the information sharing through digital form. This method hides the messages into images. So intruder cannot understand the distorted image and the data communication become secured. Through VC method number of shares has been generated from the original images. So here each RGB pixel shares are separately created by Visual Secret Share (VSS) scheme. The created multiple shares of the secret images are encrypted and decrypted with RSA algorithm. In the encryption process the multiplication technique is used for key generation process and public key is used for encryption process and private key is used for decryption process. Secret image’s quality has been compared through the Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) values. The experimental result of decrypted image PSNR value is 156.32 and MSE value is 0.5031. The Number of Changing Pixel Rate (NPCR) and Unified Averaged Changed Intensity (UACI) values are compared for the secure level of the secret image. The result of decrypted image NPCR value is 69.44 and UACI value is 13.88. Finally, the experiment result shows that the proposed method is giving more security and quality of secret image sharing and also execution time is faster than existing method.

  相似文献   

4.
We designed a stream-cipher algorithm based on one-time keys and robust chaotic maps, in order to get high security and improve the dynamical degradation. We utilized the piecewise linear chaotic map as the generator of a pseudo-random key stream sequence. The initial conditions were generated by the true random number generators, the MD5 of the mouse positions. We applied the algorithm to encrypt the color image, and got the satisfactory level security by two measures: NPCR and UACI. When the collision of MD5 had been found, we combined the algorithm with the traditional cycle encryption to ensure higher security. The ciphered image is robust against noise, and makes known attack unfeasible. It is suitable for application in color image encryption.  相似文献   

5.
A chaos based image encryption and lossless compression algorithm using hash table and Chinese Remainder Theorem is proposed. Initially, the Henon map is used to generate the scrambled blocks of the input image. The scrambled block undergoes a fixed number of iterations based on the plain image using Arnold cat map. Since hyper chaos system has complex dynamical characteristics than chaos, the confused image is further permuted using the index sequence generated by the hyper chaos along with hash table structure. The permuted image is divided into blocks and the diffusion is carried out either by using Lorenz equations or by using another complex matrix generated from the plain image appropriately. Along with diffusion, compression is also carried out by Chinese Remainder Theorem for each block. This encryption algorithm has high key space, good NPCR and UACI values and very less correlation among adjacent pixels. Simulation results show the high effectiveness and security features of the proposed algorithm.  相似文献   

6.
Naz  Farah  Shoukat  Ijaz Ali  Ashraf  Rehan  Iqbal  Umer  Rauf  Abdul 《Multimedia Tools and Applications》2020,79(31-32):22107-22129

The main challenge for American Standard Code for Information Interchange (ASCII) based image encryption methods is to increase security with less computational cost. Earlier, well known image encryption techniques are not only deficient in performance but also lacked in embedding of confidential data in an image using ASCII based methods. Therefore, this study aims to contribute an ASCII based efficient and secure image encryption method having additional feature of embedding confidential data in an image. Moreover, the embedding process is not static but it is dynamic as compared to the existing work. The novelty of proposed method encompasses optimal security, effective encryption speed and randomized embedding of secret data in an image even of having multi-operations. The proposed method was evaluated experimentally with variety of tests such as Pixel correlation analysis, Number of Pixels Change Rate (NPCR), Unified Average Changing Intensity (UACI), Histogram, Entropy, Peak Signal to Noise Ratio (PSNR), and Mean Square Error (MSE) including encryption decryption time. Thus the experimental results show that the proposed method is optimally secure and outperformed in image encryption as well as in randomized embedding of confidential data than the existing techniques.

  相似文献   

7.
为了进一步提高混沌系统的混沌特性,为图像加密算法提供更可靠的混沌系统,增强图像加密算法的安全性,提出了一种基于二维反三角超混沌系统的新型图像加密算法。首先,在一维三角混沌函数的基础上构建了一个二维反三角超混沌系统,通过分岔图和Lyapunov指数等仿真实验,验证了该系统具有更广的混沌区间和更强随机性的迭代序列,遍历性更加优秀;然后,基于此混沌系统,采用"置乱-扩散"策略,根据不同密钥生成的不同超混沌序列,对图像矩阵进行无重复置乱和循环移位扩散,循环三次得到密文,完成加密过程;最后,对图像加密方案进行了直方图分析、密钥空间分析、相邻像素相关性分析、明文敏感性分析和信息熵分析等性能测试。其中密文图像的相关指标参数像素变化率(NPCR)和统一平均变化强度(UACI)的测试值非常接近于它们的理想期望值,信息熵的测试结果约为7.997,也非常接近于理想期望值8。实验结果表明,此图像加密系统具有更可靠的安全性,抵抗攻击能力强,在图像安全领域具有较好的应用前景。  相似文献   

8.
最近,一种基于比特置乱的超混沌图像加密算法被提出,其核心思想为:首先,用混沌序列对明文图像进行像素置乱操作;然后,根据一个随机序列中相邻两个元素的大小关系对像素进行不同的比特位置乱;最后,把经过比特置乱后的序列与另一个混沌序列进行扩散、混淆运算得到最终的密文图像,从而使明文图像达到更好的加密效果。对该加密算法进行了安全性分析,发现该算法的安全性完全依赖于3个混沌序列,通过选择明文攻击依次破解出原算法中的3个混沌随机序列,恢复出了明文图像。理论分析和实验结果验证了所选择明文攻击策略的可行性,同时对该算法进行了改进,在改进算法中混沌系统的初始值与明文图像的SHA-256哈希值有关,从而使得密钥流与明文图像相关,因此算法可以抵抗选择明文的攻击。  相似文献   

9.
基于细胞神经网络超混沌特性的图像加密新算法   总被引:2,自引:0,他引:2  
针对一般流密码对明文变化不敏感的缺陷,基于细胞神经网络(CNN),提出一种图像加密新算法。以一个6维CNN产生的超混沌系统作为密钥源,并根据明文图像各点像素值的逻辑运算结果选取密钥;同时使用像素位置置乱和像素值替代两种方法对数字图像进行加密。实验表明,该算法加密效果好,NPCR值和密钥敏感性高(>0.996),满足数字图像加密安全性的要求,同时具有计算简单、易于实现、能提高数字图像传输的安全性等特点。  相似文献   

10.
为了使得视频加密技术具有更加良好的加密效果,在原本AES加密算法基础上进行了创新,通过加密元素的选取、运动矢量的加密方案设计、DCT变化系数的加密方案设计三部分进行了展开分析与实验。经过后续仿真验证,密钥敏感性得到了很好的提升;视频质量方面,改进后的AES算法的RGB直方图可知其加密效果和解密还原效果良好,经过对比分析,改进后的AES算法加密的SSIM值最小、PSNR值更低,即加密效果相对更好;经过计算可知,编码时间百分比增加了0.23%,解码时间百分比增加了8.56%,对NPCR、UACI以及加密前后视频帧像素对的相关系数等参数分别测试可知,相比前人的几种加密方式,改进后视频加密安全性能最好。综上分析可知,改进后视频加密效果最好。  相似文献   

11.
针对传统Logistic混沌系统混沌性能低,生成伪随机序列随机性较差等问题,本文提出一种新的改进Logistic混沌方程,并与Lorenz超混沌系统、压缩感知理论相结合构建一个多混沌图像压缩加密系统。在加密过程中与传统加密算法相结合,进行置乱、扩散操作最终获得密文图像。通过改进的Logistic混沌方程获得随机性能更好的伪随机序列来构造受控测量矩阵,仿真实验表明通过改进的Logistic混沌方程来构造的受控测量矩阵在压缩率为75%的条件下峰值信噪比达到34.26 dB,与传统Logistic混沌方程相比在同等条件下提高约10 dB,并且该算法有较好的抗差分攻击性能,像素改变率(NPCR)与统一平均变化程度(UACI)接近理论值。故本文提出的加密算法具有较好的压缩性、安全性以及信号重建特性。  相似文献   

12.
块调制置乱图像加密是加密域可逆信息隐藏常用的加密方法之一,能有效提高算法的隐藏容量和抵抗现有唯密文、已知明文等攻击的能力.针对块调制置乱图像加密,提出一种已知明文攻击条件下的密钥流估计方法.首先,定义图像差值块,分析指出块调制生成密文块以较高的概率保持差值块不变的特性.然后,提出一种伪差值图像构建、差值块立方均值索引查找等关键策略的块置乱密钥的快速估计方法.分析讨论了图像的差值块立方均值分布、分块大小对置乱密钥估计正确率的关系.最后,给出了提高图像加密安全性可能的解决方案.实验结果表明,明文图像的纹理复杂度和分块大小是影响块置乱密钥估计正确率和算法时间复杂度的主要因素;分块大小大于3×3时,图像块置乱密钥的估计正确率达到70%以上,密文图像的内容会被泄露.  相似文献   

13.
结合Logistic映射和三维离散Lorenz映射,构造了一个新的五维离散混沌映射。基于该映射,提出了一个只有两轮扩散操作的图像加密算法,在第一轮扩散操作中的密钥流与明文相关,在第二轮扩散操作中的密钥流与第一轮的密文相关,这导致算法中的最终加密密钥与明文相关且密文与明文、密钥之间的关系复杂化。实验结果和安全性分析表明,该算法具有密钥空间大、密文图像统计特性良好、密文对明文和密钥非常敏感、抵抗选择明(密)文的攻击、加密速度快的优点。所提算法在图像保密通信和存储应用中将具有良好的应用前景。  相似文献   

14.
Image encryption technology plays an important role in today’s multimedia applications and Internet information security transmission. However, most image encryption algorithms still have problems, for example, cipher images occupied high bandwidth during transmission, image encryption speed is slow, image encryption algorithms are not associated with plain image, and there is no complete ciphertext feedback mechanism. These prob-lems all affect the security and easy use of image encryption algorithms. In order to solve the above problems, the compressive sensing technology and chaotic system were studied, and a new image encryption algorithm based on double chaotic system and compressive sensing with plaintext association was proposed. The plaintext image association key was used to associate the plain image hash value with the Logistic chaotic system parameters. Discrete wavelet transform, was used to sparse the plain image. Then the random measurement matrix was generated by the Logistic chaos system, and the image was encrypted once by combining the compressive sensing technique and the random measurement matrix to obtain the intermediate image. The intermediate image was hashed again, and the Rucklidge chaos system initial value was associated with the plain image hash value together. The Rucklidge chaotic system and encryption algorithm were used to control the intermediate image for secondary encryption and accord-ingly obtain the cipher image. The encryption algorithm was a new plaintext correlation encryption algorithm, which used the image’s own pixel value to control the scrambling of the intermediate image. It also enhanced the plaintext association and established a ciphertext feedback mechanism. Simulation results and performance analysis show that the algorithm has good encryption performance. The encrypted image can be compressed according to the compres-sion ratio, effectively reducing the size of the cipher image. Moreover, it is resistant to common attacks such as known plaintext attack, selective plaintext attack and differential attack, which is better than other common image encryption algorithms. © 2022, Beijing Xintong Media Co., Ltd.. All rights reserved.  相似文献   

15.

In this digital era, a huge amount of digital data is being generated, transmitted, and stored over the network. Images are widely searched, shared and uploaded which make them more vulnerable to the attackers. Therefore, image encryption has become the most widespread form of secure image communication. In recent past, a range of chaotic encryption schemes have been proposed for image encryption which suffers from low key space and high computational overhead. In this paper, the authors have proposed a secure image encryption technique based on 2D Baker’s map. In the proposed scheme a plain image is permuted first, based on a sequence of pseudo random number generated by 2D Baker’s map followed by diffusion process based on XORing. The strength of the proposed scheme is analyzed using the most well-known security test measures like NPCR, MSE, PSNR, UACI, correlation coefficient, Entropy etc. and the results demonstrate that the proposed scheme is resistive to various types of known attacks. The scheme runs on comparatively low computational overhead. Further, the results are compared with existing schemes.

  相似文献   

16.
针对一些基于混沌的图像加密算法中存在密钥与明文不相关, 混沌序列存在周期性等问题, 提出新的加密方案. 首先基于明文图像和哈希函数SHA-384产生Lorenz混沌系统的初值, 控制混沌系统产生混沌序列, 然后引入人工神经网络对混沌序列进行训练以消除其混沌周期性, 输出新的序列. 使用新的序列对明文图像进行置乱和扩散操作, 完成加密. 实验结果表明, 该算法提高了密文的安全性, 增大了密钥空间, 同时能抵抗各种攻击方式.  相似文献   

17.
Cheng  Guangfeng  Wang  Chunhua  Xu  Cong 《Multimedia Tools and Applications》2020,79(39-40):29243-29263

Over the last few years, lots of chaotic image encryption schemes have been proposed. However, most of the schemes are permutation-diffusion architectures which still have some shortcomings, such as weak key streams, small key spaces, small information entropy, and so on. To eliminate the above weaknesses, in this paper, we propose a hyper-chaotic image encryption scheme based on quantum genetic algorithm (QGA) and compressive sensing (CS), which is a new image encryption scheme and has not been proposed so far. Firstly, QGA can update the population with the quantum rotation gate, which can enhance the randomness of the population and avoid falling into local optimum. Then compressive sensing technology is used to reduce data storage and speed up the encryption and decryption process. Moreover, we utilize the SHA-512 hash function of the plain image to calculate the initial values of the hyper-chaotic system, which is capable of enhancing the relationships between encryption schemes and plain images. The simulation experiments and security analysis reveal that the proposed scheme is more efficient in resisting statistical attack and plaintext attack and shows better performance in peak signal-to-noise ratio (PSNR) and information entropy compared with other image encryption schemes based on chaos theory.

  相似文献   

18.
针对DNA编码规则单一和混沌加密算法对密钥的灵敏度低等问题,提出一种基于DNA编码和超混沌系统的图像加密方案。该算法首先使用SHA-3算法计算明文图像的哈希值,用于超混沌系统的初始值,增加明文敏感性;其次将图像转换为DNA序列,并与所构建的S盒子进行DNA序列运算;最后用超混沌系统产生的序列对图像进行置乱。结果和理论分析表明,该算法不仅提高了密钥敏感性和传输数据的安全性,而且具有较好的抗穷举攻击、统计攻击和差分攻击能力。  相似文献   

19.
朱淑芹  王文宏  李俊青 《计算机科学》2018,45(4):178-181, 189
对一种基于感知器模型的混沌图像加密算法进行了安全性分析,发现该算法的本质就是根据等效密钥流来改变明文图像像素值的比特位,从而得到密文图像。而等效密钥流与明文图像和对应的密文图像没有任何关系,因此运用选择明文攻击的方法破解出了算法中的等效密钥流,解密出了目标明文图像;同时指出了原算法存在的另外两个安全缺陷;最后对原算法进行了改进,弥补了其缺陷。理论分析和实验结果均证实了所提出的选择明文攻击策略的可行性以及改进算法的有效性。  相似文献   

20.
针对多数密文域可逆信息隐藏算法嵌入容量小、加密算法单一的问题,提出一种双重加密的方法,并利用码分多址复用(CDMA)的思想嵌入秘密信息。加密时将图像分块,先对像素块进行多粒度置乱加密,再对块中每个像素的中间2位用流密码加密。信息嵌入采用码分多址的思想,选取k个长为4的相互正交的矩阵嵌入k层秘密信息,利用矩阵的正交性实现秘密信息多层嵌入,在提高嵌入容量的同时保证了对像素点的较小改变。对不满足嵌入条件的像素块嵌入伪比特,可避免使用位置图。拥有信息提取密钥的合法接收者可以提取秘密信息;拥有图像解密密钥可以近似恢复原始图像;拥有两种密钥既可提取秘密信息又可无损恢复原始图像。实验结果表明,512×512灰度图像Lena在峰值信噪比(PSNR)大于36 dB时最大嵌入容量133 313 bit。所提算法增强了加密图像安全性,在保证可逆性的同时大大提高密文域可逆信息隐藏嵌入容量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号