首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the modulatory effects of interleukin (IL)-1beta and prostaglandin (PG)E2 on the PGE2 receptor subtype EP1 in amnion cell cultures. METHODS: Amnion cell cultures were incubated in increasing concentrations of (IL)-1beta or PGE2. Cultures were also incubated in high concentrations of IL-1beta and PGE2 in combination. Changes in EP1 receptor levels were evaluated by western and northern blot analysis. Culture fluid PGE2 levels were measured by enzyme-linked immunosorbent assay. RESULTS: EP1 receptor protein levels decreased with increasing levels of PGE2 (r = -0.82, P < .05). EP1 receptor protein (r = 0.95, P < .05), EP1 mRNA (r = 0.95, P < .01), and culture fluid PGE2 levels (P < .01) were all increased after IL-1beta administration. EP1 receptor levels also increased approximately fourfold in response to IL-1beta incubation even in the presence of high agonist (PGE2) concentrations (P < .01). CONCLUSION: The results of this study show that IL-1beta might be involved in infection-induced preterm labor by interfering with the normal regulation of EP1 receptor levels and with the promotion of increased PGE2 production in amnion tissue.  相似文献   

2.
Prostaglandin (PG) release is characteristic of most inflammatory diseases. The committed step in the formation of free arachidonic acid into PG products is catalyzed by cyclooxygenase (COX, prostaglandin H2 synthase, PGHS), which exists as two genetically distinct isoforms. COX-1 is constitutively expressed and produces PGs and thromboxane A2 during normal physiologic activities, while COX-2 is an inducible enzyme stimulated by growth factors, lipopolysaccharide, and cytokines during inflammation or cell injury. Proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) released into the amniotic fluid in the setting of infection have been proposed to signal amnion and decidual cells to produce PGs that may culminate in preterm labor. However, since the molecular control of this phenomenon has not been established, this study used amnion-derived WISH cells to determine if TNF-alpha promoted the formation of PGs through COX-2 activity. Treatment of WISH cells with TNF-alpha (0.1 ng/mL-100 ng/mL) caused a dose-dependent increase in COX-2 expression and the subsequent biosynthesis of PGE2 that persisted for at least 48 hrs. In contrast, COX-1 mRNA and protein levels were unaltered by TNF-alpha treatment as determined by RT-PCR and immunoblot analysis, respectively. TNF-alpha-stimulated COX-2 expression and the subsequent formation of PGE2 were inhibited by dexamethasone (0.1 microM). In addition, indomethacin (1 microM) and the novel COX-2-selective inhibitor, NS-398 (IC50 approximately 1.1 x 10(-9) M), attenuated TNF-alpha-elicited PGE2 production. Results presented here demonstrate that TNF-alpha elicits prolonged and regulatable induction of COX-2 in WISH cells, while COX-1 is constitutively expressed and unchanged in response to TNF-alpha stimulation.  相似文献   

3.
PURPOSE: To determine the relative contribution of cyclooxygenase (COX)-1 and COX-2 in regulating prostaglandin (PG) E2 and PGF2alpha receptors (EP and FP, respectively) densities and their functions in retinal vasculature of neonatal pigs. METHODS: Newborn pigs were treated intravenously every 8 hours for 48 hours with saline, 40 mg/kg nonselective COX inhibitor ibuprofen, 80 mg/kg COX-1 inhibitor valeryl salicylate, or 5 mg/kg DuP697 and 5 mg/kg NS398, COX-2 inhibitors. Retinal microvessel EP and FP receptor densities were measured by radioligand binding and receptor-coupled effects by determining second-messenger inositol 1,4,5-trisphosphate (IP3) and vasomotor responses. Retinal blood flow (RBF) response to incremental increases in blood pressure (BP) was measured by a microsphere technique. RESULTS: Valeryl salicylate, DuP697, and NS398 reduced retinal PGE2 and PGF2alpha concentrations in the newborn by approximately half, whereas ibuprofen caused further reduction to levels observed in adults. Retinal vessel EP1, EP3, and FP receptor densities increased approximately threefold after treatments with COX-1 or COX-2 inhibitors, and five- to sixfold after ibuprofen treatment. EP and FP receptor upregulation was associated with corresponding increases in IP3 production and retinal vasoconstriction in response to PGF2alpha, fenprostalene (an FP agonist), PGE2, 17-phenyl trinor PGE2 (an EP1 agonist), and M&B28,767 (an EP3 agonist) and with enhanced RBF autoregulation of high BP (> or =125 mm Hg). Conversely, EP2 receptor density and coupled functions were minimally affected by COX inhibition. CONCLUSIONS: Data suggest that increased COX-1- and COX-2-catalyzed prostaglandin synthesis contribute equivalently to the downregulation of retinovascular EP1, EP3, and FP receptors and their vasoconstrictor functions in newborn pigs; the EP2 receptor was not significantly influenced by ontogenic alterations in prostaglandin levels.  相似文献   

4.
OBJECTIVE: To determine the effects of interleukin 1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), dexamethasone, and 17beta-estradiol on the expression of cyclooxygenase-1 (COX-1) and COX-2 in bovine chondrocytes. METHODS: Northern blot analysis was used to quantify COX-1 and COX-2 mRNA expression in primary cultures of bovine chondrocytes and prostaglandin production to evaluate COX activity. RESULTS: IL-1alpha and TNF-alpha increased the expression of COX-2. This effect was independent of de novo protein synthesis and dependent on increased mRNA stability in the case of IL-1alpha. Dexamethasone inhibited the effects of both cytokines. 17beta-estradiol inhibited COX-2 mRNA expression in basal conditions, but had no effect on COX-2 expression induced by cytokines. The specific COX-2 inhibitor compound NS 398 prevented the increase in prostaglandin E2 (PGE2) production induced by the cytokines. COX-1 levels remained stable with all treatments. CONCLUSION: Increase in mRNA stability is a mechanism implicated in the induction of COX-2 by some cytokines. The effects of IL-1alpha and TNF-alpha on PGE2 production are mainly due to an increase in COX-2 activity as shown by the effect of compound NS 398. 17beta-estradiol inhibits COX-2 mRNA expression in basal conditions, suggesting that estrogens could be implicated in the control of cartilage metabolism.  相似文献   

5.
The action of prostacyclin, prostaglandin E1 (PGE1), and their mimetics on myocardial function includes changes in contractility, electrophysiological properties, and protection from injury caused by transient myocardial ischemia. This study was undertaken to investigate the basic properties of myocardial E-type prostaglandin (EP) receptors. Ligand binding studies using an enriched preparation of sarcolemmal membranes prepared from pig hearts revealed a single class of binding sites for [3H]PGE1, with a Kd of 3.7 nmol/L and a Bmax of 92 fmol/mg protein. Competition experiments indicated highest affinity for EPs, suggesting an EP receptor. In addition, the EP receptor subtype-selective agonists sulprostone (EP1 and EP3) and M&B 28.767 (EP3) were active, suggesting the presence of an EP3 receptor subtype. PGE1 stimulated sarcolemmal GTPase and inhibited sarcolemmal adenylyl cyclase activity, indicating EP3 receptor coupling to an inhibitory G protein (Gi). Additional in vivo experiments showed that intracoronary infusion of PGE1 (1 nmol/min) decreased isoprenaline-stimulated left ventricular contractile activity without altering systemic vascular resistance. This inhibition of beta-adrenergic effects is compatible with the known myocardial anti-ischemic action of prostaglandins. Further experiments examined EP3 receptor density and G-protein coupling in sarcolemma from ischemic and reperfused ischemic myocardium. In anesthetized open-chest minipigs, occlusion of the left anterior descending coronary artery for 60 minutes increased EP3 receptor density by 50%, whereas receptor affinity was unchanged. This upregulation was prevented by pretreatment with colchicine (2 mg/kg i.v.), indicating microtubule-dependent receptor externalization. Northern hybridization showed comparable EP3 receptor mRNA expression in control and ischemic myocardium. The increase of receptor protein was reversed during 60 minutes of reperfusion. G-protein coupling proved to be intact in ischemic and reperfused ischemic myocardial tissue, as shown by preserved GTP-gamma-S-induced decrease of [3H]PGE1 binding. These data demonstrate for the first time that myocardial receptors for PGE1 belong to the EP3 subtype. The properties of this receptor include inhibition of adenylyl cyclase and upregulation during regional myocardial ischemia, suggesting an involvement in the anti-ischemic activity of E- and I-type prostaglandins.  相似文献   

6.
Prostaglandin E2 (PGE2) is an endogenous hormone of adrenal zona glomerulosa cells and is released in response to stimulation by agonists such as angiotensin II (Ang II). It stimulates the release of aldosterone from cultured bovine adrenal zona glomerulosa cells. These studies were designed to determine whether this steroidogenic effect of PGE2 was mediated by an EP1, EP2, or EP3 receptor. Prostaglandin E2 and 11-deoxy PGE1, an EP2-selective agonist, stimulated aldosterone release in a concentration-related manner with an ED50 of 300 nmol/L for PGE2 and 2 micromol/L for 11-deoxy PGE1. The maximal effect of PGE2 was less than that of angiotensin II. 17-Phenyl trinor PGE2, an EP1-selective agonist, required concentrations of 100 micromol/L to stimulate aldosterone release and sulprostone, an EP3/EP1-selective agonist, failed to alter aldosterone release. The EP1-selective antagonist SC19220 failed to alter basal or PGE2-stimulated aldosterone release over a range of concentrations. PGE2 and 11-deoxy PGE1 also stimulated an increase in both intracellular and extracellular cAMP. This increase was time- and concentration-related. The ED50 for PGE2 was 9.8 micromol/L. 17-Phenyl trinor PGE2 and sulprostone were without effect. Using fura-2 loaded cells, PGE2 (2 micromol/L), dibutyryl cAMP (2 mmol/L), and Ang 11 (2 micromol/L) increased intracellular calcium over basal concentrations by 5.5-fold, 3-fold, and 6.2-fold, respectively. Like PGE2, dibutyryl cAMP also stimulated aldosterone release. PGE2- and dibutyryl cAMP-induced aldosterone release were blocked by the calcium channel inhibitor diltiazem. These studies indicate that PGE2 is a potent stimulus for aldosterone release and that the effect is mediated by EP2 receptors. Both cAMP and calcium appear to mediate the steroidogenic effect of PGE2 and calcium seems to be distal to cAMP.  相似文献   

7.
Prostaglandin (PG) production by human amnion has been postulated to have a role in the onset of labor. Previous work by ourselves and others has demonstrated that oxytocin, phorbol esters and epidermal growth factor (EGF) increase PGE2 production in human amnion cells by activation of the Phospholipase C/Protein Kinase C (PKC) cascade system. The present study was undertaken to determine the effect of prior activation of the Adenylate Cyclase cascade system upon subsequent stimulation of PGE2 production by oxytocin, phorbol 12-myristate-13-acetate (PMA) or EGF in amnion cells and membrane discs. Isoproterenol, forskolin and dibutyryl cyclic adenosine monophosphate (dbcAMP) were utilized to activate the Adenylate Cyclase system at the receptor, enzyme and second messenger level. In control amnion cells, oxytocin, PMA and EGF each provoked dose dependent increases in PGE2 production. In cells preincubated with dbcAMP, forskolin or isoproterenol, agonist stimulated PGE2 production was markedly (50-90%) inhibited (p < 0.01). Inhibition was dose dependent upon preincubator concentrations. Maximal inhibition by adenylate cyclase activators occurred with 2-4 h of preincubation. In membrane discs, forskolin preincubation also inhibited oxytocin, PMA and EGF stimulation of PGE2 production. Activation of the Adenylate Cyclase system in human amnion cells or membrane discs inhibits the subsequent action of potent stimulators of PGE2 production in human amnion.  相似文献   

8.
Prostaglandins are known to play a central role in the initiation of labor in humans, and amnionic cells constitute a major source of these compounds. Prostaglandin synthesis and release by amnion cells in response to hormones and ligands takes place after a characteristic 4-5 h lag. However, we report herein that free arachidonic acid (AA), the metabolic precursor of prostaglandins, can be induced at much shorter times (1 h) in human amnionic WISH cells by phorbol 12-myristate 13-acetate (PMA) through activation of protein kinase Calpha (PKCalpha). WISH cells were found to possess both cytosolic group IV phospholipase A2 (cPLA2) and Group VI Ca2+-independent phospholipase A2 (iPLA2). Of these, the cPLA2 was found to be the likely mediator of AA mobilization in PMA-activated WISH cells. PMA also activates phospholipase D (PLD) in these cells and ethanol, a compound that inhibits PLD-mediated phosphatidic acid (PA) formation, blocked AA release. Moreover, prevention of PA dephosphorylation by the PA phosphohydrolase inhibitors propranolol and bromoenol lactone, resulted in inhibition of AA release by PMA-treated WISH cells. Collectively, these data suggest that activation of cPLA2 and attendant AA release by phorbol esters in WISH cells requires prior generation of DAG by phosphatidate phosphohydrolase.  相似文献   

9.
Maternal infection is a cause of spontaneous abortion and preterm labor in humans, but the pathophysiology is unclear. We hypothesized that eicosanoids play an important role in infection-driven pregnancy loss. To investigate this hypothesis, we administered lipopolysaccharide (LPS) to pregnant C3H/HeN mice and found that LPS administration caused fetal death in a dose-dependent fashion. Pretreatment with indomethacin significantly decreased the proportion of fetal death from 83% to < 25% in mice injected with 10 micrograms of LPS. Also, decidual explants from LPS-treated mice produced significantly more inflammatory eicosanoids, including prostaglandins E2 and F2 alpha and thromboxane B2, than controls. We investigated the regulatory mechanisms responsible for increased decidual prostanoid production in response to LPS. Western and Northern blots demonstrated that decidual protein and mRNA levels of a recently recognized highly inducible form of cyclooxygenase, COX-2, were substantially increased in mice treated with LPS. Induction of COX-2 was rapid: mRNA was detected 30 min after LPS injection. In contrast, another form of cyclooxygenase, COX-1, was only minimally induced in response to LPS. Our data indicate that LPS induces decidual prostanoid production via increased COX-2 expression. Since LPS-mediated fetal death is markedly diminished by pretreatment with indomethacin, COX-2-mediated eicosanoid production is likely a key pathophysiologic event in LPS-mediated fetal death.  相似文献   

10.
Prostaglandin E2 (PGE2) is a potent local mediator of cell growth and differentiation in various tissues. The receptors for PGE2 have been classified into four pharmacological subtypes, EP1, EP2, EP3, and EP4, based on the responses to selective agonists and antagonists. We have cloned a functional cDNA for the rat EP2 receptor subtype from a rat lung cDNA library. The rat EP2 receptor cDNA encodes 357 amino acid residues having high homology with the human and mouse EP2 receptors and containing seven putative transmembrane domains. In COS-7 cells transfected with rat EP2 cDNA, specific [3H]PGE2 binding was found with a dissociation constant of 14.9 nM, and this binding was inhibited by unlabeled PGE2 and PGE2 alpha. PGE2 and butaprost, an EP2 selective agonist, were effective in increasing the cAMP level in the COS-7 cell transfectants. Northern blot and RT-PCR analysis showed widespread distribution of the EP2 receptor in various tissues. Higher EP2 expression was found in fetal long bones and calvariae than in adult by RT-PCR and in situ hybridization, suggesting a role for this receptor in rapidly growing skeletal tissue.  相似文献   

11.
The synthesis of prostanoids is regulated by cyclooxygenases (prostaglandin H synthases), which catalyze the conversion of arachidonic acid to PGH2. Cyclooxygenases are the target of aspirin and other nonsteroidal anti-inflammatory agents. In this study, we found that human polymorphonuclear leukocytes (PMNs) express the inducible isoform of cyclooxygenase, COX-2, when stimulated by LPS whereas the protein was not detectable in freshly isolated human PMNs. We also found by immunohistochemical analysis that COX-2 is expressed in PMNs in inflamed human tissues. COX-2 was induced in a time- and concentration-dependent fashion when isolated human PMNs were exposed to LPS; COX-2 was also induced, or its expression was increased, by TNF-alpha, IL-1, and IL-8. Expression of COX-2 in stimulated PMNs was paralleled by secretion of PGE2. The release of PGE2 was blocked by a selective nonsteroidal inhibitor of COX-2, indicating that the enzyme is responsible for the prostanoids produced, and was inhibited by dexamethasone. The time course of LPS-induced COX-2 expression and other features were different in freshly isolated PMNs, monocytes, and macrophages, indicating that COX-2 expression is differentially regulated in myeloid cells of different lineages and degrees of maturation. Consistent with this, IL-4 and IL-10, which suppressed LPS-induced COX-2 expression in monocytes, had little effect on this response by PMNs. These experiments demonstrate that PMNs express COX-2 when appropriately stimulated. Thus, they may actively influence the eicosanoid composition of the acute inflammatory milieu.  相似文献   

12.
PGE2 is one of the key molecules in the osteoblast. It is the major prostanoid in the bone, and its production is under the control of both systemic and local factors. PGE2 has been reported to have multiple actions in the osteoblast, such as growth promotion and cell differentiation. To better understand the action of PGE2 in the osteoblast, we determined the PGE receptor subtypes in MC3T3-E1, an osteoblastic cell line derived from the normal mouse calvaria. Northern blot analysis revealed that EP1 and EP4 subtypes are expressed in MC3T3-E1. In contrast, EP3 subtype was not detected by either Northern blot analysis or RT-PCR. The contribution of each subtype was evaluated by studying the effects of subtype-specific analogs on osteoblastic function at confluency and 5 days after confluency. An EP1 agonist, 17-phenyl-omega-trinor PGE2, increased DNA synthesis and decreased alkaline phosphatase activity. 11-Deoxy-PGE1, and EP2 and EP4 agonist, decreased DNA synthesis and increased alkaline phosphatase activity at both stages. Butaprost, an EP2-selective agonist, showed effects similar to those of 11-deoxy-PGE1 only at confluency. Another and more differentiated osteoblastic marker, osteocalcin production, was detectable and was stimulated by 11-deoxy-PGE1 only 5 days after confluency. The exposure of these cells to EP1 agonist changed the cell shape to a more fibroblastic appearance. These results indicate that EP1, EP4, and probably EP2 are present in MC3T3-E1 cells; EP1 promotes cell growth, and EP2 and EP4 mediate differentiation of the osteoblast. Furthermore, the decreased response to EP2-specific agonist 5 days after confluency suggests that the expression of PGE receptor subtype is dependent on the stage of osteoblastic differentiation. This is the first report to determine PGE receptor subtypes in the bone.  相似文献   

13.
Prostaglandin E2 (PGE2) is known to autoamplify its production in the osteoblasts through the induction of prostaglandin G/H synthase-2 (PGHS-2), which is the inducible form of the rate-limiting enzyme in PG synthesis, PGHS. To elucidate the cellular mechanism mediating this process, we have employed the PGE2 analogs, which are specific agonists for four subtypes of PGE receptor, and studied the potency of these analogs to induce PGHS-2 mRNA in mouse osteoblastic MC3T3-E1 cells. The induction was mainly observed by 17-phenyl-omega-trinor PGE2 (EP1 agonist) and sulprostone (EP3/EP1 agonist), but not by butaprost (EP2 agonist) or 11-deoxy PGE1 (EP4/EP2 agonist). Since EP3 subtype was undetectable in MC3T3-E1 cells, these data indicate that PGHS-2 mRNA induction is mediated through EP1 subtype of PGE receptor in MC3T3-E1 cells. PGE2 production determined by radioimmunoassay was also increased by 17-phenyl-omega-trinor PGE2 and sulprostone. The autoamplification of PGE2 production is considered to be important in elongating the otherwise short-lived PGE2 action in certain physiological conditions such as mechanical stress and fracture healing, as well as the pathological inflammatory bone loss. The observations in the present study provide us with the better understanding of these processes.  相似文献   

14.
OBJECTIVE: Interleukin-11 (IL-11), an IL-6-type cytokine, is thought to be involved in bone resorption via osteoclast differentiation. Here, we characterized the combined effect of IL-1alpha and tumor necrosis factor alpha (TNFalpha), major cytokines in the rheumatoid synovium, on the production of IL-11 by cultured rheumatoid synovial fibroblasts (RSFs). METHODS: The amounts of IL-11, IL-6, and prostaglandin E2 (PGE2) were measured by enzyme-linked immunosorbent assay. IL-11 messenger RNA (mRNA) levels were determined by Northern blotting. Protein expression of cytosolic phospholipase A2 (cPLA2), cyclooxygenase 2 (COX-2), and protein kinase C (PKC) isoforms were determined by Western blotting. RESULTS: IL-1alpha and TNFalpha synergistically stimulated RSFs to produce IL-11 at both the mRNA and protein levels. This synergistic effect was completely inhibited by indomethacin. The inhibition was prevented by PGE2, indicating that the synergistic effect of IL-1alpha and TNFalpha was PGE2-mediated. The cooperative effects of these 2 cytokines were also observed in the production of PGE2 and the expression of 2 regulatory enzymes in PGE2 production, cPLA2 and COX-2. The synergistic induction of IL-11 by IL-1alpha and TNFalpha was completely inhibited by a potent inhibitor of all isoforms of PKC, GF109203X. In contrast, phorbol myristate acetate, which induced a down-regulation of PKC, degrading all PKC isoforms except atypical PKC, did not affect the induction of IL-11. CONCLUSION: These findings suggest that IL-1alpha and TNFalpha synergistically stimulate the production of IL-11 via their effects on PGE2 production in the rheumatoid joint, and that atypical PKC may be another target for down-regulation of IL-11, the bone resorption-associated cytokine.  相似文献   

15.
In many systems the interleukin-1 receptor antagonist opposes the effects of interleukin-1 beta. We considered that it might block interleukin-1 beta-stimulated prostaglandin production from human decidual cells. Very high levels of interleukin-1 receptor antagonist (> 1000 pg/ml) had limited inhibitory effects on IL-1 beta-stimulated PGE2 synthesis, and lower levels of antagonist (< 1000 pg/ml) increased the effects of IL-1 beta. Low concentrations of the antagonist alone (1-100 pg/ml) increased basal PGE2 production, whereas higher levels (10-100 ng/ml) had less effect. It seems, therefore, that in human decidua the "antagonist" is more accurately described as a partial agonist. It has been suggested that the IL-1 receptor antagonist could be used to inhibit decidual prostaglandin synthesis and thereby prevent preterm labor, but this report shows that caution should be exercised before using the receptor antagonist.  相似文献   

16.
1. We recently demonstrated that intrathecal administration of prostaglandin E2 (PGE2) and PGF2alpha induced allodynia through a pathway that includes the glutamate receptor and nitric oxide (NO)-generating systems from pharmacological studies. In order to clarify the involvement of NO in prostaglandin-induced allodynia, we measured NO released from rat spinal cord slices by a chemiluminescence method. 2. PGE2 stimulated NO release from both dorsal and ventral regions all along the spinal cord. PGE2 stimulated the release within 10 min and increased it in a time-dependent manner. 3. The PGE2-induced NO release was observed at 100 nM-10 microM. PGF2alpha stimulated the release at concentrations higher than 1 microM, but PGD2 (up to 10 microM) did not enhance it. 4. 17-Phenyl-omega-trinor PGE2 (EP1 > EP3) and sulprostone (EP1 < EP3) were as potent as PGE2, but PGE1 was less potent, in stimulating NO release. While M&B 28767 (EP3) did not enhance the release, butaprost (EP2) stimulated it at 1 microM. The PGE2-evoked release was blocked by ONO-NT-012, a bifunctional EP1 antagonist/EP3 agonist. 5. The PGE2-evoked release was Ca2+-dependent and blocked by MK-801 (NMDA receptor antagonist) and L-NAME (NO synthase inhibitor). The release was also inhibited by PGD2 and dibutyryl-cyclic AMP. 6. The present study demonstrated that PGE2 stimulates NO release in the rat spinal cord by activation of NMDA receptors through the EP1 receptor, and supports our previous findings that the NO-generating system is involved in the PGE2-induced allodynia.  相似文献   

17.
A cDNA clone of prostaglandin (PG) E receptor EP1 subtype (rEP1) was isolated from a rat uterus cDNA library. It encodes 405 amino acid residues with seven transmembrane-spanning domains and couples to Ca2+ mobilization. In addition, three cDNA clones encoding a variant form of rEP1 were isolated. The open reading frame can code a 366-amino acid protein carrying a specific change of 49 amino acids from the middle of transmembrane segment VI to COOH terminus; it possesses a transmembrane segment VII-like structure lacking an intracellular COOH-terminal tail. Southern blot analysis of rat genomic DNA and genomic polymerase chain reaction demonstrated that these cDNAs were derived from a single copy gene. Northern blot analysis and ribonuclease protection assay revealed that both rEP1 and rEP1-variant receptor mRNAs were highly expressed in the kidney. Immunoblot with an antibody directed toward the specific region of rEP1-variant receptor showed that rEP1-variant receptor protein was expressed in the membrane of the kidney and Chinese hamster ovary (CHO) cells transfected with rEP1-variant cDNA. Thus, the rEP1-variant receptor is translated from mRNA which is not spliced at nucleotide position 952 in the segment VI transmembrane region. rEP1-variant receptor retained the ligand binding activity with affinity and specificity similar to rEP1 receptor, but lost the coupling of signal transduction systems by itself. However, when rEP1-variant receptor was stably co-expressed with rEP1 receptor in CHO cells, the Ca2+ mobilization mediated by EP1 receptor was significantly suppressed. Furthermore, when rEP1-variant receptor was expressed in CHO cells, cAMP formation by activation of endogenous EP4 receptor was strongly blocked. These results suggest that the rEP1-variant receptor may affect the efficiency of signal coupling of PGE receptors and attenuate the action of PGE2 on tissues.  相似文献   

18.
19.
20.
To determine the mechanisms by which Hange-shashin-to (TJ-14) reduces prostaglandin E2 (PGE2) levels, the effects on blood corticosterone levels were examined in vivo and the effects on cyclooxygenase (COX) activity in vitro assessed. TJ-14, orally administered to rats at dose levels between 125 and 1000 mg/kg, caused a dose-dependent increase in blood corticosterone levels. We also showed that Glycyrrhizae Radix and Ginseng Radix, constituents of TJ-14, are involved in the increase in blood corticosterone. The activity of COX-1 was not inhibited by TJ-14 even at a dose of 1000 microg/ml, while COX-2 was inhibited at dose levels between 10 and 1000 microg/ml. The constituents Scutellariae Radix, Glycyrrhizae Radix and Coptidis Rhizoma were believed to be involved in COX-2 inhibition. These results suggest that the effect of TJ-14 in decreasing PGE2 is partially mediated by corticosterone and inhibition of COX-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号