首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behaviour of two commercial titanium alloys Ti-6Al-4 V (ASTM F136) and Ti-13Nb-13Zr (ASTM F1713) was investigated in Ringer physiological solution at two pH values (5.5 and 7.0). The corrosion properties were examined by using electrochemical techniques: Potentiodynamic anodic polarization, cyclic polarization and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion properties of both alloys at different conditions were measured in terms of corrosion potential (E corr), corrosion current density (i corr) and passivation current density (i pass). Equivalent electrical circuits were used to modulate EIS data, in order to characterize alloys surface and better understanding the pH effect on the interface alloy/solution.  相似文献   

2.
The purpose of this study is to synthesize and characterize nanosized titania (TiO2), zinc oxide (ZnO), and its composite coating on Ti–6Al–4V to enhance its corrosion protection behavior in Ringer's solution. Nanosized powders of TiO2 and ZnO was characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), and scanning electron microscopy - energy dispersive atomic spectroscopy (SEM-EDAX) analysis. As a result of antibacterial activity, both ZnO and TiO2/ZnO have produce remarkable inhibition zone on Escherichia coli. The antibacterial activity of composites are due to the combined effect of ZnO on TiO2. The adherence and surface uniformity of TiO2/ZnO composite film on titanium implant was examined by optical microscopy and Vickers microhardness test. Corrosion resistant behavior of the coating on titanium implant was investigated by tafel polarization and impedance analysis. The composite coatings on Ti–6Al–4V have produced improved corrosion resistance with a pronounced shift in the anodic corrosion potential (Ecorr) with a corresponding less corrosion current density (Icorr) compared to monophase coating. Similar results have been obtained for impedance analysis which indicated a reduction in double layer capacitance (Cdl) and with enhancement in charge transfer resistance (Rct). These observations suggest improved corrosion resistance property of TiO2/ZnO composite coating on Ti–6Al–4V.  相似文献   

3.
TiO2 coating was obtained by sol–gel method to improve the corrosion resistance of Mg–Ca alloy in human body environment. The corrosion behavior of Mg–1.0 Ca alloy with TiO2 coating was investigated by electrochemical tests and immersion tests in simulated body fluid (SBF). Bare Mg–1.0 Ca alloy suffered serious attack after immersed in simulated body fluid only for 48 h. While for the Mg–1.0 Ca alloy with TiO2 coating, the surface almost maintained intact with only several collapses after immersed in SBF for 168 h. The electrochemical test results showed that the free corrosion current (i corr) of Mg–1.0 Ca alloy substrate was 3.3275e−2A/cm2, while the i corr of TiO2 coating was only 1.58549e−5A/cm2. Therefore, TiO2 coating significantly improved the corrosion resistance of Mg–1.0 Ca alloy in SBF. This enhances the potential of Mg–Ca alloy used as biodegradable orthopedic material.  相似文献   

4.
Zinc alloy offers superior sacrificial protection to steel as the alloy dissolves more slowly than pure zinc. The degree of protection and the rate of dissolution depend on the alloying metal and its composition. Zinc-nickel alloy may also serve as at less toxic substitute for cadmium. In this paper the physico-chemical characterization of zinc-nickel electrodeposits obtained from sulphamate bath containing substituted aldehydes was carried out using hardness testing, X-ray diffraction, and corrosion resistance measurements. The corrosion behaviour of these samples in a 3.5% NaCl solution was examined. The decrease inI corr and high charge transfer resistance indicated the improved corrosion resistance of these deposits.  相似文献   

5.
The corrosion characteristic of a novel Mg-Li alloy with RE in alkaline NaCl solution was investigated by electrochemical means, such as open circuit potential vs time curves, potentiodynamic polarization curves and electrochemical impedance spectroscopy(EIS). The result showed that Cl concentration and pH value affected the corrosion of Mg-Li alloy, and in high Cl concentration solution Cl concentration was the major factor. Corrosion of the alloy was slighter in the stronger alkaline solution, because corrosion current(Icorr) reduced, corrosion potential (Ecorr) turned to positive direction and the capacitive loops enlarged. When Cl increased, Icorr increased and capacitive loops shrinked, this means that corrosion of the alloy was more serious with the increase in Cl concentration.  相似文献   

6.
The corrosion fatigue (CF) behaviour, under constant deflection bending conditions with a pulsating tension stress form, of 2024-T3 aluminium alloy, unanodized and anodized to form a thick porous film, in 3.5% NaCl solution has been investigated. It was found that E corr varies very little until specimen fracture under low frequency CF conditions, whereas E corr drops rapidly when approaching the later fracturing stage of the CF process under high-frequency conditions for unanodized specimens. However, a slow drop in E corr was detected from the commencement of the CF process, and lasted up to a much more rapid drop at a later fracturing stage for the anodized specimen. This behaviour presumably can be explained by the cracking of the anodic film and the theory of imperfect recovery of the surface film. It is suggested that the E corr monitoring technique may be useful for determining the remnant CF life for existing structural parts of this alloy or other aluminium alloys regardless of whether or not they are anodized. Furthermore, the T3 temper provides a microstructure which may retard main-crack formation and penetration in the CF process of the anodized alloy, thus mitigating partly the negative effect of the readily crackable anodic film.  相似文献   

7.
Once placed in a magnetic field, smart magnetic materials (SMM) change their shape, which could be use for the development of smaller minimally invasive surgery devices activated by magnetic field. However, the potential degradation and release of cytotoxic ions by SMM corrosion has to be determined. This paper evaluates the corrosion resistance of two SMM: a single crystal Ni–Mn–Ga alloy and Tb0.27Dy0.73Fe1.95 alloy. Ni–Mn–Ga alloy displayed a corrosion potential (E corr) of −0.58 V/SCE and a corrosion current density (i corr) of 0.43 μA/cm2. During the corrosion assay, Ni–Mn–Ga sample surface was partially protected; local pits were formed on 20% of the surface and nickel ions were mainly found in the electrolyte. Tb0.27Dy0.73Fe1.95 alloy exhibited poor corrosion properties such as E corr of −0.87 V/SCE and i corr of 5.90 μA/cm2. During the corrosion test, this alloy was continuously degraded, its surface was impaired by pits and cracks extensively and a high amount of iron ions was measured in the electrolyte. These alloys exhibited low corrosion parameters and a selective degradation in the electrolyte. They could only be used for medical applications if they are coated with high strain biocompatible materials or embedded in composites to prevent direct contact with physiological fluids.  相似文献   

8.
Titanium alloy Ti–15–3–3 (Beta-21S) was implanted with nitrogen ions by plasma immersion ion implantation at 700, 750 and 800 °C. Micro Raman and XPS results confirm the formation of nitrides after implantation. Corrosion current density (icorr) of the treated samples in simulated body fluid (Hank’s solution) is higher than that of the substrate. Treated samples also exhibit lower charge transfer resistance and higher double layer capacitance as compared to that of substrate in electrochemical impedance spectroscopic studies. However, no corrosion related effects are observed after 28 days of immersion in SBF. EDS results show the presence of oxygen after corrosion studies. XPS spectra from the implanted samples show the presence of nitride and oxynitride on the surface and formation of oxide due to corrosion process.  相似文献   

9.
《Materials Letters》2004,58(22-23):2787-2790
In this study, corrosion behavior of pure Al and Al–4 wt.% Mg alloy matrix composites, comprising 60 vol.% SiC particles, has been investigated. Composites were produced by pressure infiltration technique at 750 °C. The corrosion tests were carried out in 3.5 wt.% NaCl environment up to 28 days. The weight loss of the composites increased with increasing duration time up to 3–5 days then remained constant. Scanning electron microscopy (SEM) analysis showed that Al–4 wt.% Mg alloyed matrix composite exhibited higher corrosion resistance than pure Al matrix composite although potentiodynamic polarisation measurements showed higher icorr values of Al–4 wt.% Mg alloyed matrix composites than pure Al matrix composites. Experimental results revealed that precipitation of Mg2Si as a result of reaction between Al–Mg alloy and SiC particle has a beneficial effect on corrosion resistance of Al–4Mg alloy matrix composites due to interruption of the continuity of the matrix channels within the pressure infiltrated composites.  相似文献   

10.
Ultrafine-grained (UFG) Al-26 wt% Si alloy was obtained through multipass equal-channel angular pressing (EACP) procedure and subsequently tested in 3.5 wt% NaCl solution for the evaluation of electrochemical corrosion. The results show that the ECAPed alloy with increased number of pressing passes obtain lower mass-loss ratios, nobler E corr and E pit, lower I corr values, and higher anode polarization. The improved corrosion resistance of the ECAPed alloy results from the homogeneous UFG structure with the breakage of brittle large primary silicon crystals, which contributes to a higher pitting resistance. The oxidation product with improved adhesion force and protection efficacy can be formed with greater ease on UFG alloys. It implies that grain refinement through severe-plastic-deformation can enhance anticorrosion behavior of hypereutectic Al–Si alloys, besides the well-known strengthening and toughening effects.  相似文献   

11.
Passivation and corrosion behavior on Ag, Sn and Sn‐Ag alloys were studied using various electrochemical techniques, i.e. open‐circuit, potentiodynamic polarization and impedance measurements. The specimens were polarized between –1000 and 500 mV vs. saturated calomel electrode (SCE) in naturally oxygenated NaF solution of different concentrations. The results of potentiodynamic polarization showed that each of icorr and ic increases with increasing either Sn% or F concentration. EIS measurements under open circuit conditions confirmed well this behavior. The effect of temperature was also studied in 0.5M NaF at temperature range of 291K to 333K. The corrosion current icorr was observed to increase with temperature for the same electrode. The activation energy was calculated according to Arrhenius equation and its value was found to decrease considerably with increasing the Sn content in the alloy.  相似文献   

12.
In this paper, a protective multilayer coating, with electroless Ni coating as bottom layer and electrodeposited Ni–TiO2 composite coating as top layer, was successfully prepared on AZ91D magnesium alloy by a combination of electroless and electrodeposition techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface, cross-section morphologies and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, open circuit potential and potentiodynamic polarization techniques. The results showed that the corrosion process of Ni–TiO2 composite coating was mainly composed of three stages in the long-term immersion test in the aggressive media, and could afford better corrosion and mechanical protection for the AZ91D magnesium alloy compared with single electroless Ni coating. The micro-hardness of the Ni–TiO2 composite coating improved more than 5 times than that of the AZ91D magnesium alloy.  相似文献   

13.
The effect of silver (Ag) and bismuth (Bi) on the corrosion resistance of Sn-9Zn alloy in NaCl 3 wt.% solution was investigated using electrochemical techniques. The results showed that the addition of Bi and Ag lead to the increase of corrosion rate and the corrosion potential Ecorr is shifted towards less noble values. After immersion, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive of spectroscopy (EDS) analysis of the corroded alloy surface revealed the nature of corrosion products. EDS and XRD analyses confirmed the oxide of zinc (ZnO and Zn5(OH)8Cl2H2O) as the major corrosion product formed on the outer surface of in the tested three solder alloys.  相似文献   

14.
The changes with time in the corrosion rate and corrosion current density on a cast iron electrode in various aqueous salt solutions have been carried out using total immersion test and potentiostatic polarization curves. The concentration of salts taken is expected to be present in potable water. The relative behaviour of these salts towards corrosion has also been studied, which is found to be different from previous studies. The total immersion test parameters viz. weight loss, corrosion rate as well as potentiostatic parameters, open circuit potential,I corr, Tafel slopes, corrosion rate, have been calculated by standard methods. Besides these the relative increase in corrosion rate with time as well as the percentage to which corrosion rate should be decreased so as to provide protection towards corrosion have also been calculated. It was found that KCl and NaCl are major contributors than MnSO4, Pb(NO3)2, KI and KBr. The relative increase in corrosion is high in KBr, KI, NaNO3, CaCl2, and less in Pb(NO3)2, NaHCO3 and CaCO3 test solutions. For the reliability of results the data has been statistically analysed.  相似文献   

15.
Electrochemical corrosion behaviours of the untreated and the carburized of Ti-46.5Al (mol %) alloy were investigated. X-ray diffractometry (XRD) and scanning electron microscopy (SEM) were applied to characterize the carburized layer. Potentiodynamic polarization curve, electrochemical impedance spectroscopy (EIS) and SEM morphology of the corroded surface were used to evaluate corrosion resistance of both carburized and untreated TiAl alloy in 1 mol/L HCl. The outer layer of the carburized TiAl alloy is a continuous Ti2AlC scale. Polarization curve and electrochemical impedance spectroscopy (EIS) of the carburized TiAl alloy present a nobler corrosion potential, a more positive pitting potential and a higher polarization resistance, respectively, compared with the untreated sample. After anodic corrosion or immersion corrosion, a deposited layer can be observed on the surface of the carburized titanium aluminide alloy. By contrast, pitting and crevasse corrosion occur on the surface of the untreated TiAl alloy after anodic corrosion and some corrosion products and slight corrosion appear on the surface of the untreated TiAl alloy after immersion corrosion.  相似文献   

16.
The present paper aims to compare the corrosion resistance of the electroless Cu–P–SiC with Cu–P composite coating on carbon steel in 1 M HCl solution by the weight loss, potentiodynamic polarisation and electrochemical impedance spectroscopic (EIS) techniques. The study reveals that, the corrosion current density (Icorr) and the double layer capacitance (Cdl) values decrease, the charge transfer resistance (Rct) and inhibition of efficiencies (IE %) increase with the incorporation of SiC particles in the Cu–P matrix indicating the improvement in corrosion resistance.  相似文献   

17.
The corrosion resistance of Ti45Al8.5Nb intermetallic alloy in artificial saliva and its cytocompatibility was studied via electrochemical tests, scanning electron microscopy, ion release measurement, and MTT assay, with contemporary biomedical Ti6Al4V and Ti6Al7Nb alloys as comparison. The results demonstrate that the corrosion potential (Ecorr) and the corrosion current density (icorr) of the three experimental alloy samples are similar and there is no statistically significant difference among them (p > 0.05). The Al3+ ion releasing concentration for Ti45Al8.5Nb intermetallic and Ti6Al7Nb alloy after anodic polarization are close. The relative cell proliferation rates of the three experimental alloy extract groups are all over 90% at various cultivation periods (1, 3, and 5 d), and there is no obvious difference for the MG63 cell morphologies comparing with that of the negative group, reaching confluence after 5 d culture and showing well stretched, which indicates that Ti45Al8.5Nb intermetallic alloy has a good cytocompatibility with the Grade 1 RGR value (no toxicity) according to ISO 10993‐5: 1999.  相似文献   

18.
Benzotriazole (BTAH) was used for the first time to inhibit the corrosion of Al–B4C composites in a NaCl solution. Its corrosion inhibition effect was systematically investigated as a function of BTAH concentrations, volume fractions of B4C particles and immersion time by using potentiodynamic polarization, electrochemical impedance and infrared reflection adsorption spectroscopy techniques. It was found that BTAH is a good corrosion inhibitor for the Al–B4C MMCs in a 3.5 g L−1 NaCl solution, and its inhibition efficiency increased with increasing BTAH concentration. For the same BTAH concentration and immersion time, higher B4C volume fraction leads to higher corrosion inhibition efficiency. The inhibition efficiency of benzotriazole was also influenced by the immersion time: the inhibition efficiency increases with the immersion time in the first 18 h. However, prolonging the immersion time leads to a decrease in the inhibition efficiency. As the BTAH was an inhibitor with a cathodic character and it inhibited corrosion by physically adsorbing on B4C particles at the composite surface, it obeyed the Freundlich adsorption isotherm.  相似文献   

19.
The corrosion behavior of Ti–8Al–1Mo–1V alloy was investigated in 3.5% NaCl and 5% HCl solutions. Corrosion properties of Ti–6Al–4V alloy were also evaluated under the same conditions for comparison. It was found that both Ti–8Al–1Mo–1V and Ti–6Al–4V alloys exhibited spontaneous passivity and low corrosion current densities in 3.5% NaCl solution. The potentiodynamic polarization curves obtained in 5% HCl solution revealed an active–passive transition behavior and similar corrosion rates for the examined alloys. However, the results of the weight loss experiments under accelerated immersion conditions (5 M HCl at 35 °C) indicated that Ti–8Al–1Mo–1V alloy exhibited inferior corrosion behavior compared to Ti–6Al–4V alloy. These results were confirmed by scanning electron microscopy (SEM) analysis of the samples after immersion tests which revealed that the β phase was corroded preferentially for both alloys, but to a larger extent in the case of Ti–8Al–1Mo–1V alloy.  相似文献   

20.
A study to optimize the process parameters for electrodeposition of a Ni–Fe–Mo alloy is reported. A 22full factorial design was successfully employed for the experimental design analysis of the results. The optimum experimental conditions for producing the corrosion resistant alloy were 120 mA/cm2 current density, 20 rpm cathode rotation, 9.0 pH at 30 °C. The alloy was deposited at 61% current efficiency, with an average composition of 62 wt% Ni, 17wt% Fe, 21wt% Mo and traces of boron, and with E corr −0.506 V, R p 8.883 × 103 Ohm cm2 and I corr 6.468 × 10−7 A/cm2. The deposit obtained under these conditions had an amorphous character, good adherence, high corrosion resistance and a nodular morphology. Electrochemical corrosion tests verified that the electrodeposited Ni–Fe–Mo alloy had better corrosion resistance than the Fe–Mo alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号