首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetite (Fe3O4) nanoparticles were prepared by solvothermal method and its composites with reduced graphene oxide namely FG1, FG2, and FG3 (changing magnetite precursor loading 0.1, 0.5, and 1 respectively) were used as adsorbents for the removal of methyl violet (MV) dye. The structural and morphological results confirm that rGO sheets were decorated with Fe3O4 and it ensures the variation of active sites toward dye removal property. The maximum adsorption capacity obtained for FG2 was 196 mg/g. The adsorption isotherms and kinetics better fit Langmuir and pseudo-second-order kinetic model for FG1 and FG2. Increasing of Fe3O4 loading on rGO reduces the dye adsorption sites and too low Fe3O4 loading affects the magnetic separation. The optimal loading of Fe3O4 on rGO is important parameter for the adsorption process and fast separation of adsorbent.  相似文献   

2.
Novel composite membranes are successfully developed for adsorption and catalytic degradation of methylene blue (MB) by blending Fe3O4-coated CNTs (Fe3O4@CNTs) nanoparticles in polyethersulfone (PES) and sulfonated polysulfone (SPSf) matrix via nonsolvent-induced phase separation (NIPS) method assisted by magnetic field. Fe3O4@CNTs nanoparticles migrate to the separation layer under the induction of magnetic field, thus Fe3O4@CNTs/PES/SPSf composite membranes prepared under magnetic field exhibit a better dye removal ability compared with that without magnetic field. The MB removal ratio by Fe3O4@CNTs/PES/SPSf composite membrane containing 8 wt% Fe3O4@CNTs (M2−M) can reach up to 99% in 30 min under the conditions of 0.25 g composite membrane, 20 mg/L MB, 0.1 mol/L H2O2, pH = 3 and 80°C. Furthermore, the composite membranes show excellent recycling performance, as the MB removal capacity remains at 99% even after four cycles.  相似文献   

3.
《分离科学与技术》2012,47(6):861-867
A novel magnetic Fe3O4 modified reduced graphene oxide nanocomposite (Fe3O4@SiO2-rGO) was prepared by a covalent bonding method. The morphology and properties of the Fe3O4@SiO2-rGO were characterized by transmission electron microscopy and X-ray diffraction. The prepared Fe3O4@SiO2-rGO was tested as an efficient adsorbent for the removal of some dyes from aqueous solution for the first time. The performance of Fe3O4@SiO2-rGO was evaluated using methylene blue and neutral red as model compounds. Experiments were carried out to investigate the adsorption kinetics and adsorption capacity of the adsorbent and the effect of the adsorbent dosage and sample solution pH on the removal of the dyes. Kinetic data were well fitted by pseudo second-order model. The Langmuir model and the Freundlich model were used to study the adsorption isotherms. The Fe3O4@SiO2-rGO nanocomposite showed to be a highly efficient adsorbent with the advantage of separation convenience. The thermodynamic parameters indicated that the adsorption of the dyes onto the Fe3O4@SiO2-rGO was a spontaneous process.  相似文献   

4.
Magnetoactive electrospun fibrous membranes consisting of polyvinylpyrrolidone (PVP), chitosan (CS) and pre-fabricated, double-layer oleic acid-coated magnetite nanoparticles (OA.OA.Fe3O4) were fabricated and evaluated as new adsorbent materials for the removal and recovery of uranium (U(VI)) from aqueous solutions. The adsorption has been investigated by batch-type experiments and the solid material has been characterized by X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy/energy dispersive X-ray analysis (TEM/EDX) and vibration sample magnetometry (VSM) measurements prior and after uranium adsorption. The experimental adsorption data were found to be well fitted with the Langmuir isotherm and the pseudo-second order kinetic model. The results indicate that PVP/CS/OA.OA.Fe3O4 fibrous adsorbents exhibit good adsorption properties towards U(VI) in aqueous solutions, achieving a qmax value of 0.77 mol kg−1 (183.3 mg g−1) at pH 6.0. The experiments regarding the regeneration and reuse of the magnetoactive adsorbents were carried out using Na2CO3, at pH ~11. After four cycles, the percentage relative adsorption remained stable (~100%) whereas the desorption percentage decreased from 31.9% to 21.0%. Generally, the presented results demonstrate that the incorporation of the Fe3O4 NPs has a positive effect on the adsorption efficiency of U(VI) from aquatic environments.  相似文献   

5.
A catalyst consisting of Cu0.5Mg0.5Fe2O4 (CMF) supported on carbon nanotubes (CNTs) which exhibits great potential as an adsorbent for treating Cr(VI)-contaminated wastewater has been successfully prepared. The ferrite possesses excellent magnetic properties, while CNTs have the advantage of a large surface area. This composite material not only prevents the aggregation of magnetic materials and enhances the exposure of active sites but also effectively solves the recycling problem of CNTs. Our results show that the adsorption capacity of Cu0.5Mg0.5Fe2O4–carbon nanotubes (CMF-CNTs) for Cr(VI) wastewater (45.60 mg/g) is 1.49 times higher than that of Cu0.5Mg0.5Fe2O4 (30.48 mg/g). Compared to a single catalyst, CMF-CNTs not only improve the dispersibility of magnetic materials but also exhibit synergistic effects between the composite materials, enhancing the chemical adsorption capacity. After five consecutive adsorption and desorption experiments, the adsorption capacity of CMF-CNTs remains at 88% of its initial value. Furthermore, the study of the catalyst before and after adsorption by XPS reveals that the valence state transition of Fe3+/Fe2+ and Cu2+/Cu+ plays a crucial role in the adsorption process. The results of this study demonstrate the potential of using waste materials for effective wastewater treatment and provide insights into the development of new adsorbents for pollutant removal.  相似文献   

6.
Recently, metal–organic frameworks (MOFs), which are porous inorganic–organic hybrid materials consisting of metal ions (clusters or secondary building units) and organic ligands through coordination bonds, have attracted wide attention because of their high surface area, huge ordered porosity, uniform structural cavities, and excellent thermal/chemical stability. In this work, durian shell biomass carbon fiber and Fe3O4 functionalized metal–organic framework composite material (durian shell fiber-Fe3O4-MOF, DFM) was synthesized and employed for the adsorption removal of methylene blue (MB) from wastewater. The morphology, structure, and chemical elements of the DFM material were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), and X-ray photoelectron spectroscope (XPS) techniques. Adsorption conditions such as pH, adsorption time, and temperature were optimized. The adsorption isotherm and kinetics results show that the adsorption process of DFM material to MB is more in line with the Freundlich model and pseudo-second-order kinetic model. Using these models, the maximum adsorption capacity of 53.31 mg/g was obtained by calculation. In addition, DFM material could be easily reused through an external magnet and the removal rate of MB was still 80% after five adsorption cycles. The obtained results show that DFM composite material, as an economical, environmentally friendly, recyclable new adsorbent, can simply and effectively remove MB from wastewater.  相似文献   

7.
《Ceramics International》2022,48(10):13906-13913
This study prepares Fe3O4@Ag@TiO2 (FAT) particles via a solvothermal route, then thermally treats the particles over a temperature range from 300 to 500 °C in flowing nitrogen atmosphere to form Fe3O4@Ag@TiO2-xNx (x = 0.056 to 0.15) (FATN) core-shell composite particles. The FATN particles comprise an outermost TiO2-xNx shell of about 20–50 nm in thickness, a Brunauer-Emmett-Teller surface area of 103.2–152.5 m2/g, and a Barrett-Joyner-Halenda pore size of 12.9–30.2 nm. The particles show dye adsorption and visible-light photocatalysis against a model methylene-blue (MB) dye in water. For the FATN particles being treated at 400 °C, they show a dark adsorption of 54.8% and an additional visible-light photodegradation of 25.1% when using a dyed wastewater with an initial MB concentration of 5 × 10-6 M. This compares favorably to those being treated at other nitridation temperatures. The 500 °C-treated FATN particles yet exhibit a dark adsorption of 99.1% against the MB solution. Use of an external magnet can facilely recycle the composite particles. The recycled particles remain greater than 72% of their initial MB removal capability after use of five times. The intermediate Ag nanolayer can release Ag ions to the surrounding water medium through the mesoporous shell channel. The time-dependent Ag release appears to follow the Voigt-Maxwell model and reaches 0.764 ppm after 48 h, suggesting a long-time releasing efficacy.  相似文献   

8.
Magnetic Fe3O4@C nanocomposites with well-defined core@shell structure were synthesized via a facile one-step solvothermal process using ferrocene as both iron and carbon resource in the presence of hydrogen peroxide (H2O2). The as-prepared Fe3O4@C nanocomposites were employed as adsorbent materials for removal of methylene blue (MB) from aqueous solution. Several experimental parameters, including contact time, acidity of the solution, and initial MB concentration were investigated. The result showed that the equilibrium uptake of MB was related to the MB initial concentration as well as acidity of the solution. The adsorption kinetics of MB was dominated by the pseudo-second order reaction model. Significantly, the synthesized Fe3O4@C nanocomposites could be easily isolated from the adsorption system after adsorbing MB and showed prominent reusability. All results indicated that the prepared Fe3O4@C composites had the potential to be used as adsorbents for the removal of dye pollutant from wastewater.  相似文献   

9.
The present work has focused on the removal of arsenic (III) using two effective adsorbents such as red mud treated with HCl and coated with Fe2O3. Adsorption of As (III) was performed by the function of pH, adsorbent dose, contact time, initial ion concentration, and the appropriate conditions for adsorption were determined. The characterization studies of the adsorbent were analyzed using X-ray diffraction, X-ray fluorescence, Brauner–Emmett–Teller, scanning electron microscope, and FTIR spectroscopy. The result of the studies shows that the adsorbent is suitable for the effective removal of As (III) ions. Batch adsorption process showed that the maximum adsorption occurred at Fe2O3-coated red mud. The equilibrium data were well fitted to the nonlinear Langmuir isotherm model and the maximum adsorption capacity (qm) of Fe2O3-coated red mud was found to be 21.85?mg?g?1 which indicates that Fe2O3-coated red mud had more adsorption capacity. In the Freundlich isotherm, the experimentally obtained n value of Fe2O3-coated red mud was 2.393 which indicates the favorable adsorption of As (III) on the adsorbent. Dubinin–Radushkevich isotherm confirms that the adsorption process is physical in nature. Furthermore, the adsorption kinetic studies followed the pseudo-first-order model. All the results concluded that Fe2O3-coated red mud can be considered as a cost-effective and potential adsorbent for As (III) removal.  相似文献   

10.
In this study, porous calcium silicate (CaSiO3) scaffolds were prepared by 3D gel-printing (3DGP) method and Fe3O4 water-based magnetic fluids (WMFs) were prepared by phacoemulsification compound chemical coprecipitation method. Fe3O4 WMFs were coated on CaSiO3 scaffolds surface to prepare Fe3O4/CaSiO3 composite scaffolds. The effect of WMFs with different Fe3O4 concentrations on porous CaSiO3 scaffolds was studied. The composition and morphological characteristics of porous scaffolds were analyzed by using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis. The magnetic properties were tested by vibrating sample magnetometer (VSM). The stability of Fe3O4 WMFs coatings and the degradability of composite scaffolds were tested by immersing them in simulated body fluid (SBF). The results show that when Fe3O4 concentration was 5.4% (w/v), the composite scaffolds had the highest saturation magnetization of 69.6 emu/g and the best stability in dynamic SBF. It is obviously that Fe3O4 WMFs coatings can be used for bone tissue engineering scaffolds repairing.  相似文献   

11.
《分离科学与技术》2012,47(18):3070-3081
ABSTRACT

A novel magnetic composite prepared from Fe3O4, poly(vinyl alcohol) and alkaline pretreated spent coffee grounds (Fe3O4/PVA/APSCGs) was utilized for the first time as an adsorbent for adsorption of Pb(II) ions after carefully characterizing it by various techniques (XRD, FTIR, SEM, EDX). The obtained results indicated that the adsorption was spontaneous, endothermic, fitting well with both Langmuir and Freundlich models, and more suitable to be described by the second-order kinetic model. The maximum adsorption capacity of Fe3O4/PVA/APSCGs for Pb(II) at optimum conditions (pH of 5, contact time of 24 h, APSCGs:Fe3O4 weight ratio of 4:1) was found to be 0.275 mmol.g?1. Recycling study showed a good reusability of the composite with removal efficiency maintained at 78.12% after five continuous adsorption-desorption cycles.  相似文献   

12.
In this study, a combined process of bio-inspired modification and magnetic treatment is presented for the preparation of a polydopamine (Pdop)-modified graphene (Pdop-G)-based adsorbent which incorporates ultra-small, active Fe3O4 nanoparticles (with an average size of 6.5 nm). Not only can the nanoparticles impart superparamagnetism to the modified graphene adsorbent but also enhance the adsorption performance. The ultra-small size of Fe3O4 nanoparticles allows the exposure of a high proportion of low-coordinated sites such as corners and edges. Additional active sites can thus be provided to bind methylene blue molecules, in addition to the active Pdop-G surface with catechol and amine groups which induce hydrogen bonding, electrostatic attraction, and π-π stacking interactions. The Pdop interface wraps graphene and immobilizes Fe3O4, endowing the magnetic Pdop-G (MPG) with high adsorption capacity, easy recyclability, and excellent reusability for the organic pollutant removal. In stark contrast, the counterpart without the interfacial Pdop layer suffers from severe Fe3O4 aggregation, causing its adsorption performance inferior to that of MPG. The MPG-based adsorption obeys the pseudo-second-order kinetics, and the intraparticle diffusion model also indicates the complex adsorption pathway, including the external and intraparticle mass transfer. The Langmuir isotherm can better fit the experimental data than the Freundlich isotherm, with the theoretical maximum adsorption capacities estimated to be 131.6, 140.3, and 152.0 mg/g at 30, 40, and 50 °C, respectively. The adsorption is endothermic and spontaneous, along with an increase in the randomness at the solid-solution interface. The separation factor (RL) reveals the favorable adsorption process with MPG. The superparamagnetism imparted via the Fe3O4 composition makes MPG easily recyclable. Furthermore, the removal rate can be maintained at about 90% after 5 runs of repeated usage of MPG. This study opens up a new avenue to the magnetization of adsorbents for enhancing adsorption performance in addition to imparting magnetism.  相似文献   

13.
Yang Si  Tao Ren  Yan Li  Bin Ding  Jianyong Yu 《Carbon》2012,50(14):5176-5185
Hierarchical porous, magnetic Fe3O4@carbon nanofibers (Fe3O4@CNFs) based on polybenzoxazine precursors have been synthesized by a combination of electrospinning and in situ polymerization. The benzoxazine monomers could easily form thermosetting nanofibers by in situ ring-opening polymerization and subsequently be converted into CNFs by carbonization. The resultant fibers with an average diameter of 130 nm are comprised of carbon fibers with embedded Fe3O4 nanocrystals, and could have a high surface area of 1885 m2 g?1 and a porosity of 2.3 cm3 g?1. Quantitative pore size distribution and fractal analysis were used to investigate the hierarchical porous structure using N2 adsorption and synchrotron radiation small-angle X-ray scattering measurements. The role of precursor composition and activation process for the effects of the porous structure is discussed, and a plausible correlation between surface fractal dimension and porous parameter is proposed. The Fe3O4@CNFs exhibit efficient adsorption for organic dyes in water and excellent magnetic separation performance, suggesting their use as a promising adsorbent for water treatment, and also provided new insight into the design and development of a carbon nanomaterial based on a polybenzoxazine precursor.  相似文献   

14.
In the present study, PS@α‐Fe2O3 nanocomposites were prepared by chemical microemulsion polymerization approach and the ability of magnetic beads to remove Cu(II) ions from aqueous solutions in a batch media was investigated. Various physico‐chemical parameters such as pH, initial metal ion concentration, temperature, and equilibrium contact time were also studied. Adsorption mechanism of Cu2+ ions onto magnetic polymeric adsorbents has been investigated using Langmuir, Freundlich, Sips and Redlich–Petersen isotherms. The results demonstrated that the PS@α‐Fe2O3 nanocomposite is an effective adsorbent for Cu2+ ions removal. The Sips adsorption isotherm model (R2 > 0.99) was more in consistence with the adsorption isotherm data of Cu(II) ions compared to other models and the maximum adsorbed amount of copper was 34.25 mg/g. The adsorption kinetics well fitted to a pseudo second‐order kinetic model. The thermodynamic parameters (ΔH°, ΔS°, and ΔG°) were calculated from the temperature dependent sorption isotherms, and the results suggested that copper adsorption was a spontaneous and exothermic process. POLYM. ENG. SCI., 55:2735–2742, 2015. © 2015 Society of Plastics Engineers  相似文献   

15.
A facile synthesis of highly-regulated core-shell Fe3O4/polypyrrole (PPy) microspheres is achieved using a surfactant directed chemical oxidation polymerization in aqueous solution. The thickness of the PPy layer can be tuned by the quantity of the pyrrole monomer. The formation of core-shell Fe3O4/PPy microspheres lies on the static interactions between the SO3 group in sodium dodecyl sulphate molecules and Fe3O4 microspheres. Other surfactants such as cetyltrimethylammonium bromide and polyoxyethylene (10) isooctylcyclohexyl ether (Triton X-100) directed polymerization cannot produce such highly-regulated core-shell Fe3O4/PPy microspheres. XPS spectra proved the core-shell structure of the composite microspheres. XRD, FTIR, and UV–vis spectra are used to characterize the chemical structure of the composite microspheres. The electrical and magnetic properties are also investigated. Moreover, the obtained core-shell Fe3O4/PPy microspheres can be converted to highly-regulated hollow PPy microspheres by dissolving the Fe3O4 core with acid solution. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

16.
Porous peanut-like BiVO4 and BiVO4/Fe3O4 submicron structures were synthesized by a template-free hydrothermal process at 160 °C for 24 h. The as-synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and UVvis spectroscopy. The photocatalytic activity of BiVO4 and BiVO4/Fe3O4 submicron structures were evaluated for the degradation of Rhodamine B (RhB) and methylene blue (MB) under visible light irradiation with and without the assistance of H2O2. According to the experimental results obtained, porous peanut-like BiVO4/Fe3O4 composite photocatalyst shows higher photocatalytic activity in the H2O2-assisted system under visible light irradiation compared to BiVO4. Recycling test on the BiVO4/Fe3O4 composite photocatalyst for the degradation of RhB under visible light irradiation indicates that the composite photocatalyst is stable in the H2O2-assisted system in five cycles. Therefore, this composite photocatalyst will be beneficial for efficient degradation of organic pollutants present in water and air under solar light.  相似文献   

17.
Preparation of polyaniline (PAn) and its nanocomposite containing nanometer‐size Fe3O4 is discussed, and their capability of separating anions and heavy metals from cotton textile industry waste water is studied. The removal of anions and heavy metals from the waste water was investigated and compared when PAn, nanometer‐size Fe3O4, and PAn/Fe3O4 nanocomposite were used. The results indicated that PAn and its composite were able to remove the anions and heavy metals. The anion and heavy metal removal percentages were increased by using PAn and nanometer‐size Fe3O4. The morphology and chemical structure of the adsorbents were investigated by scanning electron microscopy and Fourier transform infrared spectroscopy. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

18.
Fe3O4 coated glycine doped polypyrrole magnetic nanocomposite (Fe3O4@gly-PPy NC) was prepared via coating of suspended Fe3O4 nanoparticles with gly-PPy. FE-SEM and HR-TEM images indicated that Fe3O4 nanoparticles were encapsulated by precipitating gly-PPy moieties. Chromium(VI) adsorption followed a Langmuir isotherm with maximum capacity of 238–303 mg/g for a temperature range of 25–45 °C at pH 2. The adsorption process was governed by the ionic interaction and the reduction of Cr(VI) to Cr(III) by the PPy moiety. Results showed that NCs are effective adsorbents for the removal of Cr(VI) from wastewater and can be separated by external magnetic field from the reactor.  相似文献   

19.
Fe3O4 @C nano-adsorption was prepared by a simple one-step solvothermal synthesis method using Fe (NO3)3 、cyclodextrin as raw materials, meanwhile urea as an alkali source. The obtained samples were characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy, and Brunauer-Emmett-Teller. The adsorption behavior of the Fe3O4@C toward Cr (VI) and Congo red was also studied. The core-shell structure Fe3O4@C exhibited large specific surface area of 112.91?m2 g?1. The prepared Fe3O4@C samples demonstrated typical ferromagnetic behavior and high removal capacity in removing the toxic Cr (VI) ions and organic pollutant CR from wastewater, together with facile magnetic separability and good recyclability. Equilibrium adsorption performance was conducted by using the Langmuir and Freundlich model and Freundlich model could simulate the adsorption process of Congo red and Cr (VI) better. The maximum adsorption capacity of Cr (VI) and Congo red was 33.35?mg?g?1 and 262.72?mg?g?1 by calculation.  相似文献   

20.
BACKGROUND: Phosphate is one of the main contaminants responsible for the eutrophication of surface waters, and adsorption is a potential treatment method for this pollutant. A magnetic adsorbent manufactured from magnetite (Fe3O4) can be recovered easily from treated water by magnetic force, without requiring further downstream treatment. In this research, the surface of magnetite modified with aluminum and silica (Al/SiO2/Fe3O4) was used to adsorb phosphate in an aqueous solution in a batch system. RESULTS: The optimum solution pH for phosphate adsorption by Al/SiO2/Fe3O4 was found to be 4.5. The phosphate adsorption behavior of Al/SiO2/Fe3O4 was in good agreement with both the Langmuir and Freundlich adsorption isotherm, and the maximum adsorption capacity (qm) and Gibbs free energy of phosphate was 25.64 mg g?1 and ? 21.47 kJ mol?1, respectively. A pseudo‐second‐order model could best describe the adsorption kinetics, and the derived activation energy was 3.52 kJ mol?1. The optimum condition to desorb phosphate from Al/SiO2/Fe3O4 is provided by a solution with 0.05 mol L?1 NaOH. CONCLUSIONS: Magnetic adsorbent is a potential material for a water treatment method. The results of this study will be helpful in the development of aluminum modified silica magnetic adsorbents that can be used to remove phosphate in aqueous solution. Copyright © 2011 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号