首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 6 毫秒
1.
A facile and effective method was proposed to prepare the molecularly imprinted fluorescence sensor with carbon quantum dots, which were modified vinyl groups by acrylic acid on the surface. The obtained fluorescence composite material was investigated by transmission electron microscope and Fourier transform infrared spectra. After the experimental conditions were optimized, a linear range of 1.0–60 μmol L−1 was obtained and the detection limit was 0.17 μmol L−1. The novel fluorescence sensor can be successfully used to detect tetracycline in real samples. This study provides a convenient strategy for selective recognition and rapid detection of tetracycline in the complex environment.  相似文献   

2.
The pH-responsive molecularly imprinted polymers (SR-MIPs) for the removal of dibutyl phthalate (DBP) were obtained. The polymers were synthesized using methyl methacrylate, methacrylic acid, divinylbenzene, and a template mixed at different ratios allowing to optimize the process. The so-prepared SR-MIPs were evaluated at various pH values in processes of DBP sorption. The studies covered evaluation of uptake capacity, sorption kinetics, selectivity, and elution. The imprinted samples are characterized by improved factors comparing to their non-imprinted analogues, revealing also pH-sensitivity. The highest removal of DBP (130 mg g?1) was achieved at pH = 6, while pH-driven desorption (90%) was the most efficient at pH = 8.  相似文献   

3.
方卢秋  祝媛 《现代化工》2012,(1):57-60,62
以焦性没食子酸为模板分子,丙烯酸为功能单体,甲醇为溶剂,研究了模板分子与功能单体的结合比例,表明焦性没食子酸和丙烯酸之间通过氢键形成1∶1型配合物。在模板分子与功能单体、交联剂物质的量的比为1∶4∶20的条件下,采用沉淀聚合法制备了焦性没食子酸分子印迹聚合物微球。静态吸附实验表明,可制备出吸附量大且特异性识别能力较高的分子印迹聚合物,对焦性没食子酸有较高的亲和性和选择性。采用恒温振荡平衡吸附法以及Scatchard分析研究了聚合物的吸附特征,结果表明焦性没食子酸分子印迹聚合物在水环境下存在2种吸附位点,最大表观吸附量分别为7.5516μg/mg和11.9225μg/mg,平衡离解常数分别为9.2720×10-3mmol/L和0.1892 mmol/L。  相似文献   

4.
Molecularly imprinted polymers (MIPs) were synthesized through solution polymerization using quercetin as the template molecule, N‐vinylpyrrolidone and acrylic acid as functional monomers, N,N′‐methylenebiacrylamide as crosslinker and the redox system L ‐ascorbic acid and hydrogen peroxide as initiator in the porogen of ethanol and water. During the optimization process an interference compound, genistein (5,7,4′‐trihydroxy isoflavone), which possesses the same skeleton and functional groups as quercetin, was adopted to optimize the preparation conditions, and the separation degree of the MIP to quercetin and genistein was chosen to optimize each factor. The synthesized MIP under optimal conditions showed a specific recognition of quercetin from a mixture of quercetin and genistein. Thereafter, the structure of the MIP was comparatively characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer–Emmett–Teller analysis using non‐imprinted molecular polymers as control. In addition, the kinetics of the adsorption process were also studied, and Scatchard analysis revealed that heterogeneous binding sites were formed in the polymers. Copyright © 2012 Society of Chemical Industry  相似文献   

5.
The target of this study was to synthesize the molecularly imprinted polymers (MIPs) of L ‐phenylalanine as the solid phases for characterization of molecular adsorption by molecularly imprinted solid phase extraction (MISPE). These MIPs, in microscale, were synthesized using thermal (40°C)‐compared with thermal (65°C)‐initiated polymerization process. Itaconic acid was chosen as the functional monomers, and either ethylene glycol dimethacrylate or trimethylolpropane trimethacrylate (TRIM) was used as the cross linker and was compared together. The influences of several parameters on the properties of the MIPs were investigated, especially physical robustness from the percentage yields and molecular adsorption from the percentage recovery by MISPE. The best yields were obtained from polymers made using TRIM and thermal (65°C)‐initiated polymerization. However, there were no significant differences in molecular adsorption. It was concluded that these parameters can be considered to synthesize MIPs for chiral separation in advance steps such as other related chromatographic techniques. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2325–2330, 2007  相似文献   

6.
Molecularly imprinted polymers (MIPs) were synthesized using malachite green (MG) as template, and methacrylic acid/sodium methacrylate as composite monomers. The equilibrium dissociation constant and apparent maximum adsorption capacity of the MIPs reach 12.2 mg·L?1 and 3.2 mg·g?1, respectively. The MIPs demonstrate excellent recognition ability due to high-affinity sites constructed by the electrostatic interaction and hydrogen bonds between template and composite monomers. The MIPs were successfully employed for the detection of MG residue in aquatic products coupled with high-performance liquid chromatography (HPLC) with a detection limit of 0.57 μg·kg?1.  相似文献   

7.
Two molecularly imprinted polymers (MIPs) – poly(methacrylic acid‐co‐TRIM) (TRIM, trimethylolpropanetrimethacrylate) and poly(acylamide‐co‐TRIM) – were synthesized in different solvents for the selective recovery of isovaleric acid (template) generated during the anaerobic digestion process. The chemical and structural characterizations of the synthetic adsorbent were carried out by Fourier transform infrared spectroscopy, TGA and porosimetry through N2 adsorption–desorption isotherms. The selective and adsorptive performances of the imprinted polymers were evaluated by kinetic, isothermal, thermodynamic and selectivity studies and by adsorbent reuse experiments. The poly(methacrylic acid‐co‐TRIM) synthesized with dimethyl sulfoxide:chloroform presented higher selectivity and adsorption capacity for isovaleric acid in the presence of six volatile fatty acids. The kinetic results were well adjusted to the pseudo‐nth order and intraparticle diffusion models, leading to k values of 10?4 and 6 × 10?5 for the best synthesis of MIPs and not‐imprinted polymers, respectively. Moreover, the Sips model best described the adsorption isotherm and generated a maximum adsorption capacity of ca 209 mg g?1 (at 25 °C). Cycles of MIP use–desorption–reuse indicated that the selective adsorbent performed better than commercial adsorbents, losing less than 3% of adsorption capacity after three cycles. © 2018 Society of Chemical Industry  相似文献   

8.
A novel method for the separation of berberine hydrochloride has been developed. Berberine hydrochloride molecularly imprinted polymers were prepared by suspension polymerization in the aqueous phase using berberine hydrochloride as the template, methyl acrylic acid as a functional monomer, and ethylene glycol maleic rosinate acrylate (which contains a phenanthrene ring skeleton) and ethylene glycol dimethacrylate as combinatorial crosslinkers. The imprinted polymers were successfully used as a selective stationary phase in high‐performance liquid chromatography. Separation performance of the chromatographic column was determined from the selectivity (evaluated by separation factor) and sorption selectivity (evaluated by imprinting factor) of the molecularly imprinted and non‐imprinted polymers towards the template. The optimum conditions to maximize separation and imprinting factors were investigated. Acetic acid–methanol solution (0.05% v/v) was selected as the optimum mobile phase, while 0.2 mL min?1 was chosen as the optimized flow rate for selective separation of berberine hydrochloride. The highest imprinting and separation factors obtained were 1.924 and 18.52, respectively. Simultaneously, the chromatographic column backpressure was stable and showed good permeability. The chromatographic column was used to separate effectively template molecules from coptis root extract and other analogues. Such chromatographic columns with high selectivity can be used to selectively separate berberine hydrochloride from other compounds. © 2014 Society of Chemical Industry  相似文献   

9.
Herein, we report a magnetic molecularly imprinted polymers (m‐MIPs) using Fe3O4 as a magnetic component, carvedilol as a template molecule for the solid‐phase extraction (MISPE) as the sample clean‐up technique combined with high‐performance liquid chromatography (HPLC) and for the controlled release of carvedilol at different pH values of 1.0 (simulated gastric fluid), 6.8 (simulated intestinal fluid), and 7.4 (simulated biological fluid). The adsorption kinetics was modeled with the pseudo‐first‐order and pseudo‐second‐order kinetics, and the adsorption isotherms were fitted with Langmuir and Freundlich models. The performance of the m‐MIPs for the controlled release of carvedilol was assessed and results indicated that the magnetic MIPs also have potential applications in controlled drug release. Furthermore, the m‐MIPs were applied to the extraction of carvedilol from human blood plasma samples. Carvedilol can be quantified by this method in the 2–350 μg L?1 concentration range. The limit of detection and limit of quantification in plasma samples are 0.13 and 0.45 μg L?1. The results from HPLC showed good precision (3.5% for 50.0 μg L?1) and recoveries (between 85 and 93) using m‐MIP from human plasma samples. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41209.  相似文献   

10.
Development of water-soluble chemosensors that are selective and sensitive to Cu2+ ions is of tremendous importance owing to their potential applications in biological systems. In the present work, we report the synthesis of a new water-soluble polymer containing pendant rhodamine units that are capable of highly selective and sensitive detection of Cu2+ ions in aqueous medium. Poly(2-pyrrolidinemethyl acrylate) was prepared using RAFT polymerization technique. The pyrrolidine nitrogen group in the polymer was subjected to Aza-Michael type addition with ethyl acrylate that was followed by covalent linking of rhodamine units to the polymer. This polymer was completely water-soluble and found to be capable of sensing Cu2+ ions in aqueous medium. Cu2+-induced opening of the spirolactam ring of the rhodamine units resulted in rapid and easily noticeable colour change, thus enabling a highly selective detection of Cu2+ in μmol range. The ability of these polymeric systems to detect Cu2+ ions in complete aqueous media has more importance than use of organic solvents to solubilize the polymer as reported previously, and thus opened a new window for application of these systems in the detection of copper ions in biological systems.  相似文献   

11.
Novel phthalocyanine amide polymers (Pc) based on 1,8-naphthalenediamine (Ar) as an aromatic amine and 1,4-diaminobutane (Al) as an aliphatic amine, were synthesized to improve the limited stabilization modes of conventional phthalocyanines. The metal-free phthalocyanines polymers (MF-Pc) were moderately soluble in DMSO only while the metalized forms (Cu&Ni-Pc) were completely insoluble. The structure of the samples was confirmed using Fourier transform infrared (FTIR), ultraviolet–visible spectrometry (UV–vis) and nuclear magnetic resonance (NMR). Additionally, the thermal stability and glass transition temperatures (Tg) were investigated by thermal gravimetric analyzer (TGA) and differential scanning calorimeter (DSC), respectively. The intercalation of the metal-free phthalocyanines, based on the aliphatic amine (MF-PcAl) and aromatic amine (MF-PcAr), into laponite from DMSO solution, was proved by X-ray diffraction (XRD). The basal space of laponite increased from 1.2 to 1.36 nm upon intercalation of MF-PcAl and extended more to 1.91 nm on using MF-PcAr as intercalant while the quaternized forms of MF-Pcs behaved likewise and could not widen the basal space of laponite to more than 1.43 nm which was attributed to the random distribution of the positive charges over the Pc chains which imposed confined arrangement inside the basal space and consequently narrower space than the attained one in the case of nonquaternized phthalocyanines. The plasticized PVC composites based on laponite treated with either MF-PcAl or MF-PcAr exhibited improved resistance to the UV radiation as revealed by the retention of the tensile strength and elongation at rupture after exposure to UV radiation for different time intervals. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
pH and temperature dual‐sensitive protein imprinted microspheres with high absorption capacity have been successfully synthesized on the surface of SiO2 using chitosan grafted N‐isopropylacrylamide (CS‐g‐NIPAM) as the pH and temperature sensitive monomer, with acrylamide as comonomer, N,N′‐methylenebisacrylamide as the crosslinking agent and bovine serum albumin (BSA) as the template protein. The pH and temperature dual‐sensitivity was also investigated. The results showed that the adsorption capacity and imprinting factor improved slowly with increasing incubation pH from 4.6 to 7.0, and then decreased sharply in alkaline conditions due to the reduction of non‐specific binding from electrostatic and hydrogen bonding interactions. Fourier transform infrared spectroscopy, thermogravimetric analysis and transmission electron microscopy were used to characterize the polymers. The as‐prepared SiO2@BSA molecularly imprinted polymers were also found to have high adsorption capacity (119.88 mg g?1) within 2 h, an excellent imprinting factor (α = 2.25), specific selectivity and good reusability. © 2019 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号