首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physicomechanical properties of functionally active poly(hydroxyethyl methacrylate‐co‐methyl methacrylate) [poly(HEMA‐co‐MMA)] are evaluated. It has been reported that the surface phosphorylated poly(HEMA‐co‐MMA) is capable of eliciting direct bone bonding when implanted in vivo. Hence, it is important to examine the physicomechanical property of the copolymer as a function of surface modification. The properties assessed are differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), equilibrium swelling, compressive strength, and dynamic mechanical analysis. According to the DSC data, the glass transition temperature, Tg of poly(HEMA‐co‐MMA) is not significantly altered by surface phosphorylation. The TGA results demonstrated that unmodified and surface phosphorylated copolymers have similar degradation profile. The differential thermal analysis further supports the data. The equilibrium swelling of functionalized poly(HEMA‐co‐MMA) in phosphate buffer saline ascertained that surface phosphorylation significantly increased the hydrophilicity of the copolymer. The study further illustrated that the percentage of equilibrium swelling appreciably increases with increase in HEMA content in the copolymer and reached a plateau after 100 h. Both compressive strength and compressive modulus of poly (HEMA‐co‐MMA) decreased due to surface phosphorylation while dynamic storage modulus value was not altered. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Free radical copolymerization kinetics of 2‐(diisopropylamino)ethyl methacrylate (DPA) with styrene (ST) or methyl methacrylate (MMA) was investigated and the corresponding copolymers obtained were characterized. Polymerization was performed using tert‐butylperoxy‐2‐ethylhexanoate (0.01 mol dm?3) as initiator, isothermally (70 °C) to low conversions (<10 wt%) in a wide range of copolymer compositions (10 mol% steps). The reactivity ratios of the monomers were calculated using linear Kelen–Tüd?s (KT) and nonlinear Tidwell–Mortimer (TM) methods. The reactivity ratios for MMA/DPA were found to be r1 = 0.99 and r2 = 1.00 (KT), r1 = 0.99 and r2 = 1.03 (TM); for the ST/DPA system r1 = 2.74, r2 = 0.54 (KT) and r1 = 2.48, r2 = 0.49 (TM). It can be concluded that copolymerization of MMA with DPA is ideal while copolymerization of ST with DPA has a small but noticeable tendency for block copolymer building. The probabilities for formations of dyad and triad monomer sequences dependent on monomer compositions were calculated from the obtained reactivity ratios. The molar mass distribution, thermal stability and glass transition temperatures of synthesized copolymers were determined. Hydrophobicity of copolymers depending on the composition was determined using contact angle measurements, decreasing from hydrophobic polystyrene and poly(methyl methacrylate) to hydrophilic DPA. Copolymerization reactivity ratios are crucial for the control of copolymer structural properties and conversion heterogeneity that greatly influence the applications of copolymers as rheology modifiers of lubricating oils or in drug delivery systems. © 2015 Society of Chemical Industry  相似文献   

3.
A new methacrylic monomer, 4‐(2‐thiazolylazo)phenylmethacrylate (TPMA) was synthesized. Copolymerization of the monomer with methyl methacrylate (MMA) was carried out by free radical polymerization in THF solution at 70 ± 0.5°C, using azobisisobutyronitrile (AIBN) as an initiator. The monomer TPMA and the copolymer poly(TPMA‐co‐MMA) were characterized by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (NMR), and elemental analysis methods. The polydispersity index of the copolymer was determined using gel permeation chromatography (GPC). Thermogravimetric analysis (TGA) of the copolymer performed in nitrogen revealed that the copolymer was stable to 270°C. The glass transition temperature (Tg) of the copolymer was higher than that of PMMA. The copolymer with a pendent aromatic heterocyclic group can be dissolved in common organic solvents and shows a good film‐forming ability. Both the monomer TPMA and the copolymer poly (TPMA‐co‐MMA) have bright colors: orange and yellow, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2152–2157, 2007  相似文献   

4.
New hybrid poly(hydroxyethyl methacrylate‐co‐methyl methacrylate)‐g‐polyhedral oligosilsesquioxane [poly(HEMA‐co‐MMA)‐g‐POSS] nanocomposites were synthesized by the combination of reversible addition fragmentation chain transfer (RAFT) polymerization and click chemistry using a grafting to protocol. Initially, the random copolymer poly(HEMA‐co‐MMA) was prepared by RAFT polymerization of HEMA and MMA. Alkynyl side groups were introduced onto the polymeric backbones by esterification reaction between 4‐pentynoic acid and the hydroxyl groups on poly(HEMA‐co‐MMA). Azide‐substituted POSS (POSS? N3) was prepared by the reaction of chloropropyl‐heptaisobutyl‐substituted POSS with NaN3. The click reaction of poly(HEMA‐co‐MMA)‐alkyne and POSS? N3 using CuBr/PMDEATA as a catalyst afforded poly(HEMA‐co‐MMA)‐g‐POSS. The structure of the organic/inorganic hybrid material was investigated by Fourier transformed infrared, 1H‐NMR, and 29Si‐NMR. The elemental mapping analysis of the hybrid using X‐ray photoelectron spectroscopy and EDX also suggest the formation of poly(HEMA‐co‐MMA)‐anchored POSS nanocomposites. The XRD spectrum of the nanocomposites gives evidence that the incorporation of POSS moiety leads to a hybrid physical structure. The morphological feature of the hybrid nanocomposites as captured by field emission scanning electron microscopy and transmission electron microscopic analyses indicate that a thick layer of polymer brushes was immobilized on the POSS cubic nanostructures. The gel permeation chromatography analysis of poly(HEMA‐co‐MMA) and poly(HEMA‐co‐MMA)‐g‐POSS further suggests the preparation of nanocomposites by the combination of RAFT and click chemistry. The thermogravimetric analysis revealed that the thermal property of the poly(HEMA‐co‐MMA) copolymer was significantly improved by the inclusion of POSS in the copolymer matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
Free radical dispersion polymerization of methyl methacrylate (MMA) was carried out in supercritical carbon dioxide (scCO2) using poly{(heptadecafluorodecyl acrylate)‐co‐3‐[tris(trimethylsilyloxy)silyl]propyl methacrylate} (p(HDFDA‐co‐SiMA)) as stabilizer. Dry, fine powdered spherical poly(methyl methacrylate) (pMMA) particles with well‐defined sizes were produced. The resulting high yield of spherical and relatively uniform micron‐size pMMA particles was formed utilizing various amounts of p(HDFDA‐co‐SiMA) random copolymer. The particle diameter was shown to be dependent on the weight percent of the stabilizer added to the system. The effects of varying the concentration of stabilizer (1–7 wt%), reaction time (4–12 h) and pressure (15–35 MPa) upon the polymerization yield, molar mass and morphology of pMMA were investigated. Copyright © 2005 Society of Chemical Industry  相似文献   

6.
A novel acrylic monomer, 4-cyanophenyl acrylate (CPA) was synthesized by reacting 4-cyanophenol dissolved in methyl ethyl ketone with acryloyl chloride in the presence of triethylamine as a catalyst. Copolymers of CPA with methyl methacrylate (MMA) at different composition was prepared by free radical solution polymerization at 70 ± 1 °C using benzoyl peroxide as an initiator. The copolymers were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The solubility tests were checked in various polar and non polar solvents. The molecular weight and polydispersity indices of the copolymers were estimated by using gel permeation chromatography. The glass transition temperature of the copolymers increases with increases MMA content. The thermal stability of the copolymer increases with increases in mole fraction of CPA content in the copolymer. The copolymer composition was determined by using 1H-NMR spectra. The monomer reactivity ratios determined by the application of linearization methods such Fineman–Ross (r 1 = 0.535, r 2 = 0. 0.632), Kelen–Tudos (r 1 = 0.422, r 2 = 0.665) and extended Kelen–Tudos methods (r 1 = 0.506, r 2 = 0. 0.695).  相似文献   

7.
Heterogeneous latexes were prepared by a semicontinuous seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amounts of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. Phase separation towards the thermodynamic equilibrium morphology was accelerated either by ageing the composite latex at 80 °C or by adding a chain‐transfer agent during polymerization. The morphologies of the latex particles were examined by transmission electron microscopy (TEM). The morphology distributions of latex particles were described by a statistical method. It was found that the latex particles displayed different equilibrium morphologies depending on the composition of the second‐stage copolymers. This series of equilibrium morphologies of [poly(butyl acrylate)/poly(styrene‐co‐methyl methacrylate)] (PBA/P(St‐co‐MMA)) system provides experimental verification for quantitative simulation. Under limiting conditions, the equilibrium morphologies of PBA/P(St‐co‐MMA) were predicted according to the minimum surface free energy change principle. The particle morphology observed by TEM was in good agreement with the predictions of the thermodynamic model. Therefore, the morphology theory for homopolymer/homopolymer composite systems was extended to homopolymer/copolymer systems. © 2002 Society of Chemical Industry  相似文献   

8.
Compatibilization of blends of linear low‐density polyethylene (LLDPE)–poly(methyl methacrylate) (PMMA) and LLDPE–copolymer of methyl methacrylate (MMA) and 4‐vinylpyridine (poly(MMA‐co‐4VP) with poly(ethylene‐co‐methacrylic acid) (EMAA) have been studied. Mechanical properties of the LLDPE–PMMA blends increase upon addition of EMAA. In order to further improve interfacial adhesion of LLDPE and PMMA, 4‐vinyl pyridine units are introduced into PMMA chains, or poly(MMA‐co‐4VP) is used as the polar polymer. In LLDPE–poly(MMA‐co‐4VP)–EMAA blends, interaction of MAA in EMAA with 4VP of poly(MMA‐co‐4VP) causes a band shift in the infrared (IR) spectra. Chemical shifts of N1s binding energy in X‐ray photoelectronic spectroscopy (XPS) experiments indicate a transfer of proton from MAA to 4VP. Scanning electron microscopy (SEM) pictures show that the morphology of the blends were improved upon addition of EMAA. Nonradiative energy transfer (NRET) fluorescence results attest that there exists interdiffusion of chromophore‐labeled LLDPE chains and chromophore‐labeled poly(MMA‐co‐4VP) chains in the interface. Based on experimental results, the mechanism of compatibilization is studied in detail. Compatibilization is realized through the interaction between MAA in EMAA with 4VP in poly(MMA‐co‐4VP). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 967–973, 1999  相似文献   

9.
Optically active 2-endo-actoxy-5-endo-bornyl methacrylate (ABMA) was prepared from (+)-camphor. The homopolymerization of ABMA and copolymerization of ABMA with achiral methyl methacrylate (MMA) or styrene (St) were carried out with 2,2′-azobisisobutyronitrile (AIBN) in benzene. Effects of temperature, solvents, and reaction time on the copolymerization were discussed. The monomer reactivity ratios(r1, r2) for poly(ABMA-co-MMA) and poly(ABMA-co-St) and Q and e values for the chiral ABMA in the copolymerization systems were evaluated by the Fineman—Ross method. The absolute value of the specific rotation of poly(ABMA-co-MMA) increased with increasing ABMA unit content. A small deviation from linearity was observed, which suggests that asymmetry is not introduced into the copolymer main chain. Temperature and solvent effects on the specific rotation of the chiral homopolymer and copolymers were investigated. The results suggest that the chiral polymers synthesized in this investigation did not show a strong preference for a particular helical conformation. Applications of the chiral polymers on the asymmetric addition of n-butyllithium to aldehydes were also discussed.  相似文献   

10.
Well‐defined methyl methacrylate (MMA) and 2‐(trimethylsiloxy)ethyl methacrylate (Pro‐HEMA) copolymers were prepared by atom‐transfer radical polymerization(ATRP), using CuCl/2,2′‐bipyridine as catalytic system and p‐toluenesulfonyl chloride as initiator. ATRP process of MMA and Pro‐HEMA was monitored by 1H NMR, and the kinetic curves of the MMA/Pro‐HEMA copolymerization were plotted in terms of the 1H NMR data. At low content of Pro‐HEMA in the feed composition, the copolymerization can be well controlled with the molecular weight, polydispersity and the monomer distribution in the copolymer chain. With the increase of Pro‐HEMA content in the feed mixture, the composition of the final copolymer deviates from the composition of the feed mixture gradually, and gradient copolymers of MMA/Pro‐HEMA can be obtained. Through the hydrolysis process, well‐defined copolymers of MMA/HEMA were obtained from poly(MMA/Pro‐HEMA). Copyright © 2003 Society of Chemical Industry  相似文献   

11.
Atom transfer radical polymerization has been applied to simultaneously copolymerize methyl methacrylate (MMA) and N‐cyclohexylmaleimide (NCMI). Molecular weight behaviour and kinetic study on the copolymerization with the CuBr/bipyridine(bpy) catalyst system in anisole indicate that MMA/NCMI copolymerization behaves in a ‘living’ fashion. The influence of several factors, such as temperature, solvent, initiator and monomer ratio, on the copolymerization were investigated. Copolymerization of MMA and NCMI in the presence of CuBr/bpy using cyclohexanone as a solvent instead of anisole displayed poor control. The monomer reactivity ratios were evaluated as rNCMI = 0.26 and rMMA=1.35. The glass transition temperature of the resulting copolymer increases with increasing NCMI concentration. The thermal stability of plexiglass could be improved through copolymerization with NCMI. © 2000 Society of Chemical Industry  相似文献   

12.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

13.
Cellulase was immobilized directly on methyl methacrylate‐glycidyl methacrylate copolymer (MMA‐co‐GMA) and methyl methacrylate‐2‐hydroxy ethyl methacrylate copolymer (MMA‐co‐HEMA) by covalent attachment and crosslinking methods. The properties of the immobilized cellulase were investigated and compared with those of the free one. For the assays carried out through crosslinking method at 25°C and pH 7, the retained activities were found to be 91.92% and 74.63%, respectively, for MMA‐co‐GMA and MMA‐co‐HEMA crosslinked with 0.1% of 1‐cyclohexyl‐3‐(2‐morpholino‐ethyl) carbodiimide metho‐p‐toluenesulfonate (CMCT), respectively. The immobilized cellulase had better stability and higher retained activities with respect to pH, temperature, and storage stability than the free one. In the repeated use experiments, the immobilized cellulase using (MMA‐co‐GMA)‐CMCT (0.1%) and (MMA‐co‐HEMA)‐CMCT (0.1%) did not change after 10 and eight times of repeated use and maintained 67% and 62% from their original activities after 25 times, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The butyl acrylate (BA)/methyl methacrylate (MMA), and glycidyl methacrylate (GMA) composite copolymer latex was synthesized by seeded emulsion polymerization technique taking poly(methyl methacrylate) (PMMA) latex as the seed. Four series of experiments were carried out by varying the ratio of BA : MMA (w/w) (i.e. 3.1 : 1, 2.3 : 1, 1.8 : 1, and 1.5 : 1) and in each series GMA content was varied from 1 to 5% (w/w). The structural properties of the copolymer were analyzed by FTIR, 1H‐, and 13C‐NMR. Morphological characterization was carried out using transmission electron microscopy (TEM). In all the experiments, monomer conversion was ~99% and final copolymer composition was similar to that of feed composition. The incorporation of GMA into the copolymer chain was confirmed by 13C‐NMR. The glass transition temperature (Tg) of the copolymer latex obtained from the differential scanning calorimetry (DSC) curve was comparable to the values calculated theoretically. With increase in GMA content, particles having core‐shell morphology were obtained, and there was a decrease in the particle size as we go from 2–5% (w/w) of GMA. The adhesive strength of the latexes was found to be dependent on the monomer composition. With increase in BA : MMA ratio, the tackiness of the film increased while with its decrease the hardness of the film increased. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
BACKGROUND: The properties of copolymers depend strongly on their composition; therefore in order to tailor some for specific applications, it is necessary to control their synthesis, and, in particular, to know the reactivity ratios of their constituent monomers. Free radical copolymerizations of N,N‐dimethylaminoethyl methacrylate (DMAEM) with styrene (ST) and methyl methacrylate (MMA) in toluene solution using 1‐di(tert‐butylperoxy)‐3,3,5‐trimethylcyclohexane as initiator at 70 °C were investigated. Monomer reactivity ratios were determined for low conversions using both linear and nonlinear methods. RESULTS: For the DMAEM/ST system the average values are r1 = 0.43 and r2 = 1.74; for the DMAEM/MMA system the average values are r1 = 0.85 and r2 = 0.86. The initial copolymerization rate, Rp, for DMAEM/ST sharply decreases as the content of ST in the monomer mixture increases up to 30 mol% and then attains a steady value. For the DMAEM/MMA copolymerization system the composition of the feed does not have a significant influence on Rp. The glass transition temperatures (Tg) of the copolymers were determined calorimetrically and calculated using Johnston's sequence length method. A linear dependence of Tg on copolymer composition for both systems is observed: Tg increases with increasing ST or MMA content. CONCLUSION: Copolymerization reactivity ratios enable the design of high‐conversion processes for the production of copolymers of well‐defined properties for particular applications, such as the improvement of rheological properties of lubricating mineral oils. Copyright © 2009 Society of Chemical Industry  相似文献   

16.
A copolymer of chloroprene (CP) and isobutyl methacrylate (iBMA) [poly(CP-co-iBMA)] was prepared in benzene by radical copolymerization. For comparison, the graft copolymer of iBMA onto polychloroprene (CR) [poly(CR-g-iBMA)] was also prepared. The glass transition temperature of the poly(CP-co-iBMA) was about ?32.4°C. The monomer reactivity ratios determined by the Finneman-Ross method were given as r1 (CP) = 1.80 and r2 (iBMA) = 0.74 in the copolymerization of CP and iBMA, respectively. Miscibility of blends of CR and poly(isobutyl methacrylate) (PiBMA), prepared by casting from tetrahydrofuran (THF) solution, was investigated by their glass transition temperature behaviors and morphologies. Although the blends of CR and PiBMA were incompatible, the addition of poly(CP-co-iBMA) or poly(CR-g-iBMA) enhanced miscibility between the two base polymers. It was found that the extent of partial miscibility becomes larger when adding poly(CP-co-iBMA) than poly(CR-g-iBMA) as a third component to the CR/PiBMA blend of 50/50 wt % composition. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Summary A novel methacrylic monomer, 4-cyanophenyl methacrylate (CPM) was synthesized by reacting 4-cyanophenol dissolved in methyl ethyl ketone (MEK) with methacryloyl chloride in the presence of triethylamine as a catalyst. Copolymers of CPM with methyl methacrylate(MMA) at different composition was prepared by free radical solution polymerization at 70±1 °C using benzoyl peroxide as initiator. The copolymers were characterized by FT-IR, 1H-NMR and 13C-NMR spectroscopic techniques. The solubility of the polymers was tested in various polar and non polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in mole fraction of MMA content. The thermal stability of the copolymer increases with increases in mole fraction of CPM content in the copolymer. The copolymer composition was determined by using 1H-NMR spectroscopy. The monomer reactivity ratios estimated by the application of linearization methods such as Fineman-Ross (r1=2.524±0.038, r2=0.502±0.015), Kelen-Tudos (r1=2.562±0.173, r2=0.487±0.005) and extended Kelen-Tudos methods (r1=2.735±0.128, r2=0.4915±0.007).  相似文献   

18.
Random copolymers of poly(ethylene glycol) methacrylate (PEGM), and diethyl amino ethyl methacrylate (DEAEM) were synthesized at low, and high conversions by photoinitiation. Crosslinked poly(PEGM-co-DEAEM) samples were obtained, and characterized by FTIR, SEM, DSC, TGA, and elemental analyses. Swelling behavior of the copolymers revealed that the copolymers acted as superabsorbent hydrogels. The monomer reactivity ratios were calculated using Fineman Ross, Extended Kelen Tüdøs , and Mayo Lewis methods that gave r1(PEGM) = 0.90, r2(DEAEM) = 0.14 at low conversions. At high conversions r1 and r2 values were calculated as 1.01 and 0.40, respectively. Adsorption isotherms of methyl orange (MO) onto hydrogels were studied using Langmuir, Freundlich, and Temkin models. The experimental data fitted well with the Langmuir equation. The maximum adsorption capacity for MO was 212.7 mg g−1 at pH = 3. The adsorption data gave best fit with the pseudo-second order kinetic model. Thermodynamic evaluation showed spontaneous nature for MO adsorption onto poly(PEGM-co-DEAEM) hydrogels. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47707.  相似文献   

19.
The effect of methyl methacrylate (MMA) on the properties of transparent flame retardant unsaturated phosphate ester copolymer (poly[UPE‐co‐MMA]) prepared by bulk polymerization technique was investigated. Fourier transform infrared spectra, gel fraction (G) test, and dynamic mechanical analysis revealed the structure and crosslinking density of poly(UPE‐co‐MMA) copolymers. The thermal degradation and flame retardancy of copolymers were indicated by thermogravimetric analysis, limiting oxygen index (LOI), and microscale combustion calorimeter (MCC) test. Besides, the mechanical properties and transparency were tested with testing machines and solid ultraviolet absorption spectra. As the MMA content increased to 50%, the copolymer contained 50 wt% MMA showed the maximal G (88.93%) and transmittance was up to 91.72%. From the poly(UPE‐co‐MMA) copolymers, the tensile strength increased from 14.62 to 26.95 MPa, assigned to the increase of crosslinking density of copolymers. The char yield of poly(UPE‐co‐MMA) was up to 21.18 wt%, which was a result of decomposition of phosphate groups, producing a phosphorus‐rich layer that increased the thermal stability of the residues. LOI and MCC results confirm that the introduction of MMA can retain the flame retardancy of copolymer remarkably. POLYM. ENG. SCI., 59:2103–2109, 2019. © 2019 Society of Plastics Engineers  相似文献   

20.
A novel perfluorinated acrylic monomer 3,5‐bis(perfluorobenzyloxy)benzyl acrylate (FM) with perfluorinated aromatic units was synthesized with 3,5‐bis(perfluorobenzyl)oxybenzyl alcohol, acryloyl chloride, and triethylamine. Copolymers of FM monomer with methyl methacrylate (MMA) were prepared via free‐radical polymerization at 80°C in toluene with 2,2′‐azobisisobutyronitrile as the initiator. The obtained copolymers were characterized by 1H‐NMR and gel permeation chromatography. The monomer reactivity ratios for the monomer pair were calculated with the extended Kelen–Tüdos method. The reactivity ratios were found to be r1 = 0.38 for FM, r2 = 1.11 for MMA, and r1r2 < 1 for the pair FM–MMA. This shows that the system proceeded as random copolymerization. The thermal behavior of the copolymers was investigated by thermogravimetric analysis and differential scanning calorimetry (DSC). The copolymers had only one glass‐transition temperature, which changed from 46 to 78°C depending on the copolymer composition. Melting endotherms were not observed in the DSC traces; this indicated that all of the copolymers were completely amorphous. Copolymer films were prepared by spin coating, and contact angle measurements of water and ethylene glycol on the films indicated a high degree of hydrophobicity. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号