首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Poly(butylene adipate‐co‐terephthalate) (PBAT) nanocomposites films are prepared by a solution intercalation process using natural montmorillonite (MMT) and cetyltrimethylammonium bromide (CTAB)‐modified montmorillonite (CMMT). Cation exchange technique has been used for modification of MMT by CTAB and characterized by Fourier transform infrared analysis, thermo‐gravimetric analysis, and X‐ray diffraction (XRD) studies. CMMT gives better dispersion in the PBAT matrix than MMT and is confirmed by XRD and transmission electron microscopy. Because of better compatibility of CMMT, water vapor transmission rate of PBAT decreases more in the presence of CMMT than MMT. The biodegradability of PBAT and its nanocomposite films are studied in compost and from the morphological analysis it is apparent that the PBAT/CMMT shows a lower biodegradation rate in comparison to the PBAT/MMT. The antimicrobial activity of PBAT and its nanocomposite films is tested by an inhibition zone method. Because of the presence of the quaternary ammonium group of CTAB‐modified MMT, PBAT/CMMT nanocomposites show adequate antimicrobial activity. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40079.  相似文献   

2.
BACKGROUND: Both exfoliated and toughened polypropylene‐blend‐montmorillonite (PP/MMT) nanocomposites were prepared by melt extrusion in a twin‐screw extruder. Special attention was paid to the enhancement of clay exfoliation and toughness properties of PP by the introduction of a rubber in the form of compatibilizer toughener: ethylene propylene diene‐based rubber grafted with maleic anhydride (EPDM‐g‐MA). RESULTS: The resultant nanocomposites were characterized using X‐ray diffraction, atomic force microscopy, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical analysis and Izod impact testing methods. It was found that the desired exfoliated nanocomposite structure could be achieved for all compatibilizer to organoclay ratios as well as clay loadings. Moreover, a mechanism involving a decreased size of rubber domains surrounded with nanolayers as well as exfoliation of the nanolayers in the PP matrix was found to be responsible for a dramatic increase in impact resistance of the nanocomposites. CONCLUSION: Improved thermal and dynamic mechanical properties of the resultant nanocomposites promise to open the way for highly toughened super PPs via nanocomposite assemblies even with very low degrees of loading. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
Double‐modified montmorillonite (MMT) was first prepared by covalent modification of MMT with 3‐aminopropyltriethoxysilane and then intercalation modification by tributyl tetradecyl phosphonium ions. The obtained double‐modified MMT was melt compounded with polypropylene (PP) to obtain nanocomposites. The dispersion of the double‐modified MMT in PP was found to be greatly improved by the addition of PP‐graft‐maleic anhydride (PP‐g‐MA) as a “compatibilizer,” whose anhydride groups can react with the amino groups on the surface of the double‐modified MMT platelets and thus improve the dispersion of MMT in PP. Fourier transform infrared, X‐ray diffraction, transmission electron microscopy, thermogravimetric analysis, scanning electron microscopy, and tensile test were used to characterize the structure of the double‐modified MMT, morphology, and the thermal and mechanical properties of the nanocomposites. The results show that PP‐g‐MA promotes the formation of exfoliated/intercalated morphology and obviously increases the thermal properties, tensile strength, and Young's modulus of the PP/double‐modified MMT nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
A covalently functionalized organoclay was synthesized successfully through a condensation reaction of SiOH groups on the edge of montmorillonite (MMT) with acryloyl chloride followed by modification with hexadecyltrimethylammonium bromide (CTAB) via an ion‐exchange reaction. Fourier transform infrared confirmed that C?C groups had been grafted to MMT sheets. Wide‐angle X‐ray diffraction measurements showed that CTAB had intercalated into MMT interlayers. The content of bonded acryloyl chloride was 2.42 wt % in the functionalized organoclay according to thermogravimetric analysis. Polypropylene (PP) nanocomposites were prepared by melt mixing. Rheological measurements and morphology observations confirmed that PP nanocomposites containing the organoclay bearing C?C groups exhibited improved interfacial interaction between PP chains and MMT sheets. Thus, the PP nanocomposites showed not only higher storage modulus and complex viscosity values at low frequencies but also enhanced mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Three different loading of 3‐aminopropyltriethoxysilane (APS) was used to modify the Na‐montmorillonite via cation exchange technique. The Na‐MMT and silane‐treated montmorillonite (STMMT) were melt‐compounded with polycarbonate (PC) by using Haake Minilab machine. The PC nanocomposite samples were prepared by using Haake Minijet injection molding technique. The intercalation and exfoliation of the PC/MMT nanocomposites were characterized by using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal properties of the PC nanocomposites were investigated by using dynamic mechanical analyzer and thermogravimetry analyzer. XRD and TEM results revealed partial intercalation and exfoliation of STMMT in PC matrix. Increase of APS concentration significantly enhanced the storage modulus (E′) and improved the thermal stability of PC nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Polymeric nanocomposites were synthesized from unsaturated polyester (UPE) matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Organophilic MMT was obtained using a quaternary salt of coco amine as intercalant having a styryl group making it a reactive intercalant. The resultant nanocomposites were characterized via X‐ray diffraction and transmission electron microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated. All the nanocomposites were found to have improved thermal and mechanical properties as compared with neat UPE matrix, resulting from the contribution of nanolayer connected intercalant‐to‐crosslinker which allows a crosslinking reaction. It was found that the partially exfoliated nanocomposite structure with an exfoliation dominant morphology was achieved when the MMT loading was 1 wt %. This nanocomposite exhibited the highest thermal stability, the best dynamic mechanical performance and the highest crosslinking density, most probably due to more homogeneous dispersion and optimum amount of styrene monomer molecules inside and outside the MMT layers at 1 wt % loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
聚丙烯/蒙脱土纳米复合材料的制备与性能   总被引:67,自引:5,他引:62  
用烷基季铵盐对钠基蒙脱土进行有机化处理,使其成为有机蒙脱土。X射线衍射(XRD)表明有机阳离子已同钠离子发生离子交换作用,导致层间距扩大。用熔融插层法制备聚丙烯/蒙脱土纳米复合材料,测试了力学性能。通过XRD、DSC等手段研究了其结构与结晶行为,并与聚丙烯进行了对比。实验表明,通过熔融插层可使聚丙烯插层于蒙脱土片层之中,且所得聚合物的冲击强度有所提高。  相似文献   

8.
The bioactive agents p‐hydroxymethylbenzoate, 2,4‐dihydroxymethylbenzoate and methylsalicylate were reacted with polyoxyalkylene (D230–2000)–montmorillonite (MMT) intercalated nanocomposites. D230–2000–MMT were prepared by an ion exchange process of Na‐MMT and? NH3+ groups in polyoxyalkylene amine hydrochloride of three different molecular masses (D230, D400 and D2000). The results of X‐ray analysis and transmission electron microscopy show that D2000–MMT/p‐hydroxymethylbenzoate is an exfoliated nanocomposite, whereas in D230–MMT/p‐hydroxymethylbenzoate, D230–MMT/2,4‐dihydroxymethylbenzoate, D230–MMT/methylsalicylate and D400–MMT/p‐hydroxymethylbenzoate, having lower molecular mass and polymer loading, the MMT rearranges in an intercalated and flocculated structure. The amount of intercalated polymer and interaction between polymer and layered silicate were determined using thermogravimetric analysis and Infrared spectroscopy. The antimicrobial activities of the nanocomposites were qualitatively and quantitatively assessed by agar diffusion tests and minimal inhibitory concentration values against a Gram‐negative bacterium (Escherichia coli NCIM 2065), a Gram‐positive bacterium (Bacillus subtilis ATCC) and fungi (Candida albicans SC5314 and Cryptococcus neoformans). The D2000–MMT/p‐hydroxymethylbenzoate nanocomposite strongly inhibits the growth of all the micro‐organisms tested. The diameter of the inhibition zone varies according to the type of micro‐organism tested. The effect of nanocomposite concentration on morphology, respiration and release of calcium, potassium and sodium ions of the test micro‐organisms was examined. Copyright © 2011 Society of Chemical Industry  相似文献   

9.
Synthesis and characterization of a novel toughener–compatibilizer for polypropylene (PP)–montmorillonite (MMT) nanocomposites were conducted to provide enhanced mechanical and thermal properties. Poly(ethylene oxide) (PEO) blocks were synthetically grafted onto maleic anhydride‐grafted polystyrene‐block‐poly(ethylene/butylene)‐block‐polystyrene (SEBS‐g‐MA). Special attention was paid to emphasize the effect of PEO‐grafted SEBS (SEBS‐g‐PEO) against SEBS‐g‐MA on morphology, static/dynamic mechanical properties and surface hydrophilicity of the resultant blends and nanocomposites. It was found that the silicate layers of neat MMT are well separated by PEO chains chemically bonded to nonpolar SEBS polymer without needing any organophilic modification of the clay as confirmed by X‐ray diffraction and transmission electron microscopy analyses. From scanning electron microscopy analyses, elastomeric domains interacting with MMT layers via PEO sites were found to be distributed in the PP matrix with higher number and smaller sizes than the corresponding blend. As a benefit of PEO grafting, SEBS‐g‐PEO‐containing nanocomposite exhibited not only higher toughness/impact strength but also increased creep recovery, as compared to corresponding SEBS‐g‐MA‐containing nanocomposite and neat PP. The damping parameter of the same nanocomposite was also found to be high in a broad range of temperatures as another advantage of the SEBS‐g‐PEO toughener–compatibilizer. The water contact angles of the blends and nanocomposites were found to be lower than that of neat hydrophobic PP which is desirable for finishing processes such as dyeing and coating. © 2018 Society of Chemical Industry  相似文献   

10.
Polymeric nanocomposites were synthesized from functionalized soybean‐oil‐based polymer matrix and montmorillonite (MMT) clay using an in situ free radical polymerization reaction. Acrylated epoxidized soybean oil combined with styrene was used as the monomer. Organophilic MMT (OrgMMT) was obtained using a quaternized derivative of methyl oleate, which was synthesized from olive oil triglyceride, as a renewable intercalant. The resultant nanocomposites were characterized using X‐ray diffraction and atomic force microscopy. The effect of increased nanofiller loading on the thermal and mechanical properties of the nanocomposites was investigated using thermogravimetric analysis and dynamic mechanical analysis. It was found that the desired exfoliated nanocomposite structure was achieved when the OrgMMT loading was 1 and 2 wt%, whereas a partially exfoliated or intercalated nanocomposite was obtained for 3 wt% loading. All the nanocomposites were found to have improved thermal and mechanical properties as compared with virgin acrylated epoxidized soybean‐oil‐based polymer matrix. The nanocomposite containing 2 wt% OrgMMT clay was found to have the highest thermal stability and best dynamic mechanical performance. Copyright © 2010 Society of Chemical Industry  相似文献   

11.
Rubber‐toughened polypropylene (PP)/org‐Montmorillonite (org‐MMT) nanocomposite with polyethylene octene (POE) copolymer were compounded in a twin‐screw extruder at 230°C and injection‐molded. The POE used had 25 wt % 1‐octene content and the weight fraction of POE in the blend was varied in the range of 0–20 wt %. X‐ray diffraction analysis (XRD) revealed that an intercalation org‐MMT silicate layer structure was formed in rubber‐toughened polypropylene nanocomposites (RTPPNC). Izod impact measurements indicated that the addition of POE led to a significant improvement in the impact strength of the RTPPNC, from 6.2 kJ/m2 in untoughened PP nanocomposites to 17.8 kJ/m2 in RTPPNC containing 20 wt % POE. This shows that the POE elastomer was very effective in converting brittle PP nanocomposites into tough nanocomposites. However, the Young's modulus, tensile strength, flexural modulus, and flexural strength of the blends decreased with respect to the PP nanocomposites, as the weight fraction of POE was increased to 20 wt %. Scanning electron microscopy (SEM) was used for the investigation of the phase morphology and rubber particles size. SEM study revealed a two‐phase morphology where POE, as droplets was dispersed finely and uniformly in the PP matrix. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3441–3450, 2006  相似文献   

12.
Vanillin (4‐hydroxy‐3‐methoxy benzaldehyde) and 5‐formylamino salicylic acid microbicides were reacted with polyoxyalkylene‐montmorillonite (D230–2000‐MMT) nanocomposites. The microstructure of these Schiff base nanocomposites was characterized by TEM and XRD. D230–2000‐MMT nanocomposites were prepared by an ion exchange process of sodium montmorillonite (Na‐MMT) and NH3 + groups in polyoxyalkylene amine hydrochloride with three different molecular masses of D230, D400, and D2000. Wide‐angle X‐ray diffraction confirms the intercalation of the polymer between the silicate layers. Electrostatic interaction between the positively charged NH3 + groups and the negatively charged surface of MMT was observed. The nanocomposites were tested for antimicrobial activity against the Gram‐negative bacteria (Escherichia coli NCIM 2065), Gram‐positive bacteria (Bacillus subtillus ATCC), and fungi (Candida albicans SC5314 and Cryptococcus neoformans). The D2000‐MMT/vanillin Schiff base nanocomposite strongly inhibited the growth of all microorganisms that can be used in different applications. The amount of loaded polymer and the structure of the nanocomposite play an important role in inhibiting the bacterial and fungal strains. It is found that the Schiff base nanocomposite affect the morphology, oxygen consumption, and the release of cytoplasmic constituents such as potassium (K+), sodium (Na+), and calcium (Ca2+) ions leading to death of the cells. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
The dielectric dispersion and relaxation process in melt‐compounded hot‐pressed poly(ethylene oxide) (PEO)–montmorillonite (MMT) clay nanocomposite films of 0–20 wt % MMT concentration were investigated over the frequency range 20 Hz to 1 MHz at ambient temperature. X‐ray diffraction study of the nanocomposites evidences that the PEO has been intercalated into the MMT interlayer galleries with a helical‐type multilayer structures, which results the formation of unique parallel plane PEO–MMT layered structures. The relaxation times corresponding to PEO chain segmental motion were determined from the loss peak frequencies of different dielectric formalisms and the same is used to explore the interactions compatibility between PEO molecules and the MMT nano platelets. It is revealed that the loading of only 1 wt % MMT in PEO matrix significantly increases the PEO chain segmental motion due to intercalation, which further varies anomalously with increase of MMT concentration. The real part of dielectric function at 1 MHz, relaxation time, and dc conductivity of these melt‐compounded nanocomposites were compared with the aqueous solution‐cast PEO–MMT films. Considering the comparative changes in the values of various dielectric parameters, the effect of synthesization route on the intercalated/exfoliated‐MMT structures and the PEO chain dynamics were discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Films of poly(methyl methacrylate) (PMMA)/sodium montmorillonite (Na+‐MMT) nanocomposites have been successfully prepared utilizing Na+‐MMT by N,N‐dimethylformamide solution casting. The nanocomposite films show high transparency, enhanced thermal resistance, and mechanical properties in comparison with the neat polymer film. The transparency of the films was investigated by UV‐vis spectra. The exfoliated dispersion of Na+‐MMT platelets in nanocomposites were investigated by X‐ray diffraction and transmission electron microscopy. The enhanced thermal resistance and mechanical properties of PMMA were studied by thermal gravimetric analysis and dynamic mechanical analysis, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
Polylactide (PLA) nanocomposite was prepared by melt blending of PLA and transition metal ion (TMI) adsorbed montmorillonite (MMT). PLA nanocomposite was characterized for mechanical performance, and the results revealed that the tensile modulus, flexural modulus, and impact strength were increased marginally. The nanocomposite was optimized at 5 wt% of TMI‐modified MMT (TMI‐MMT) loading. Thermogravimetric analysis displayed increase in onset of degradation temperature, and differential scanning calorimetry showed marginal increase in glass transition temperature (Tg) and melting temperature (Tm) in case of PLA nanocomposites, when compared with virgin PLA. The flammability testing of nanocomposites indicated good fire retardance characters. X‐ray diffraction patterns of TMI‐MMT and the corresponding nanocomposites indicated an intercalation of the metal ions into the clay interlayer. Fourier transform infrared spectroscopy analysis indicate formation of [Zn(EDA)2]2+ and [Cu(EDA)2]2+ complexes in the MMT interlayer. Dynamic mechanical analysis shows increase in glass transition temperature (Tg) and storage modulus (E′) in case of PLA nanocomposites reinforced with 5 wt% modified MMT. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
Exfoliated polypropylene (PP)/layered double hydroxide (LDH) nanocomposites have been successfully synthesized via melt‐intercalation. Their structure, thermal properties, and photo‐oxidative behavior have been characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), dynamic mechanical thermal analysis (DMA), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectrum. TGA and DMA data show that the PP/LDH nanocomposites have enhanced thermal stability compared with virgin PP and corresponding PP/montmorillonites (MMT) nanocomposites, especially in high temperature range during the thermal decomposition of the samples. XPS and FTIR results give positive evidence that the photo‐oxidation mechanism of PP in the PP/LDH materials is not modified compared with that of virgin PP. However, photo‐oxidation rate of PP/LDH materials is much lower than that of PP and PP/MMT samples, indicating that the PP/LDH nanocomposites have better UV‐stability. POLYM. ENG. SCI. 46:1153–1159, 2006. © 2006 Society of Plastics Engineers  相似文献   

17.
2‐Hydroxyethyl methacrylate (HEMA)‐clay nanocomposites were prepared via in situ free radical polymerization using montmorillonite (MMT) as a crosslinker. The structure and surface morphology of the nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction, and scanning electron microscopy. It was found that exfoliated or highly expanded intercalated nanocomposite structure was obtained. The swelling degree was determined in distilled water and various pH buffered solutions. The highest swelling capacity in distilled water was observed for the nanocomposite sample prepared with the MMT amount of 10 % (w). It was seen that the diffusion mechanism was Fickian type in distilled water and also in various pH‐buffered solutions. It is interesting that the swelling degree of nanocomposites in alkaline pH values increased by the increasing of MMT in the polymer structure. This result supports the possibility of future applications of the novel nanocomposite in systems for the controlled released of drugs. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
A new type of dispersant [sodium salt of styrene–methacrylic acid copolymer (SSMA)/montmorillonite (MMT) nanocomposite] with different content of the MMT was synthesized through in situ solution free radical copolymerization. X‐ray diffraction measurements and electron microscopy observations prove that SSMA molecules can enter the interlayer space of MMT and form an intercalated structure. There are both fully intercalated and partly intercalated structures in the nanocomposites, which are related to the loading content of MMT. Transmission and scanning electron microscopy images indicate that the exfoliation degree of MMT in the nanocomposites decrease with increasing MMT content. Infrared spectroscopy (FTIR) analysis shows that there are hydrogen‐bonding interactions between carboxyl groups of SSMA and hydroxyl groups of MMT. Atrazine water dispersible granules were prepared by using SSMA/MMT nanocomposite as dispersant and their suspensibility in aqueous solution was determined to evaluate the dispersion properties of the nanocomposite. The results show that the addition of MMT can not only increase the steric effect of the SSMA to improve its dispersion properties, but also reduce the production cost of SSMA. The optimum loading content of MMT is 10 wt%.  相似文献   

19.
In this study, Ca2+‐montmorillonite (Ca2+‐MMT) and organo‐montmorillonite (OMMT) were modified by three compatibilizers with different degrees of polarity [poly(ethylene glycol) (PEG), alkyl‐PEG, and polypropylene (PP)‐g‐PEG]. PP/MMT nanocomposites were prepared by melt blending and characterized using X‐ray diffraction and transmission electron microscopy. The results showed the degree of dispersion of OMMT in the PP/PP‐g‐PEG/OMMT (PMOM) nanocomposite was considerably higher than those in the PP/PEG/OMMT and PP/alkyl‐PEG/OMMT nanocomposites, which indicated that the dispersion was relative to the compatibility between modified OMMT and PP matrix. Linear viscoelasticity of PP/MMT nanocomposites in melt states was investigated by small amplitude dynamic rheology measurements. With the addition of the modified MMT, the shear viscosities and storage modulus of all the PP/MMT nanocomposites decreased. It can be attributed to the plasticization effect of PEG segments in the three modifiers. This rheological behavior was different from most surfactant modified MMT nanocomposites which typically showed an increase in dynamic modulus and viscosity relative to the polymer matrix. The unusual rheological observations were explained in terms of the compatibility between the polymer matrix and MMT. In addition, the mechanical properties of PP/MMT nanocomposites were improved. A simultaneous increase in the tensile strength and toughness was observed in PP/PMOM nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Poly(4‐vinylpyridine) (P4VP) nanocomposites have been prepared by using an in situ polymerization method in the presence of organically modified montmorillonite (MMT) clays with a quarternary salt of cocoamine containing a vinyl group, as well as trimethoxy vinyl silane. The nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The desired exfoliated nanocomposite structure was achieved when the MMT modification was conducted in the presence of both modifiers, whereas individual modifications all resulted in intercalated structures. This resultant exfoliated nanocomposite was found to have better thermal stability and dynamic mechanical performance when compared to the other nanocomposites, even with 2 % clay loading. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号