共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypropylene/silica micro‐ and nanocomposites modified with poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) 下载免费PDF全文
The effects of different silica loadings and elastomeric content on interfacial properties, morphology and mechanical properties of polypropylene/silica 96/4 composites modified with 5, 10, 15, and 20 vol % of poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) SEBS added to total composite volume were investigated. Four silica fillers differing in size (nano‐ vs. micro‐) and in surface properties (untreated vs. treated) were chosen as fillers. Elastomer SEBS was added as impact modifier and compatibilizer at the same time. The morphology of ternary polymer composites revealed by light and scanning electron microscopies was compared with morphology predicted models based on interfacial properties. The results indicated that general morphology of composite systems was determined primarily by interfacial properties, whereas the spherulitic morphology of polypropylene matrix was a result of two competitive effects: nucleation effect of filler and solidification effect of elastomer. Tensile and impact strength properties were mainly influenced by combined competetive effects of stiff filler and tough SEBS elastomer. Spherulitic morphology of polypropylene matrix might affect some mechanical properties additionally. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41486. 相似文献
2.
3.
A new polymer nanocomposites of an epoxy resin matrix with randomly dispersed nano‐vanadium sesquioxides (V2O3) in various amounts were prepared. The structure of the nanocomposites were characterized by scanning and transmission electron microscopy (SEM and TEM), X‐ray diffraction, hardness, packing factor, extent of filler reinforcement, glass transition temperature, and sound velocity. The percolation threshold in the conductivity of the composites is lesser than 8 wt % and the dielectric constant can reach as high as 103. The resistivity—temperature curve of the composites shows a positive temperature coefficient (PTC) effect. The thermal stability of the composites was examined in terms of thermal gravimetry and differential scanning calorimetry (TG and DTA) and isothermal resistivity–time check. Because of the interfacial interaction among filler particles and the epoxy matrix, the nanocomposites exhibit higher thermal stability. The current–voltage–temperature curves behave as switching current. The temperature increases linearly with the applied voltage which makes this PTC nanocomposites very useful for temperature probe. Finally, electromagnetic interference shielding effectiveness (SE) values have been calculated and measured for the nanocomposites in the frequency range 1–12 GHz. It is found that the SE properties of the nanocomposite improve with increase in wt % of V2O3. A maximum SE of 42 dB for V20 sample at 12 GHz has been achieved. These nanocomposites are potentially useful in suppression of electromagnetic interference and reduction of radar signature. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
4.
Preparation and structure and mechanical properties of poly(styrene‐b‐butadiene)/clay nanocomposites
Star‐shaped and linear block thermoplastic poly(styrene‐b‐butadiene) copolymer (SBS)/organophilic montmorillonite clays (OMMT) were prepared by a solution approach. The intercalation spacing in the nanocomposites and the degree of dispersion of nanocomposites were investigated by X‐ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The mechanical properties, dynamic mechanical properties, and thermal stability of these nanocomposites were determined. Results showed that SBS chains were well intercalated into the clay galleries and an intercalated nanocomposite was obtained. The mechanical strength of nanocomposites with the star‐shaped SBS/OMMT were significantly increased. The addition of OMMT also gave an increase of the elongation, the dynamic storage modulus, the dynamic loss modulus, and the thermal stability of nanocomposites. The increase of the elongation of nanocomposites indicates that SBS has retained good elasticity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3430–3434, 2004 相似文献
5.
Subhadip Mondal Revathy Ravindren Beomsu Shin Suhyun Kim Hyunsang Lee Sayan Ganguly Narayan Ch. Das Changwoon Nah 《Polymer Engineering and Science》2020,60(10):2414-2427
Nanostructured carbon-based polymeric nanocomposites are gaining research interest because of their cost-effectiveness, lightweight, and robust electromagnetic interference (EMI) shielding performance. Till now, it is a great challenge to design and fabricate highly scalable, cost-effective nanocomposites with superior EMI shielding performance. Herein, highly scalable EMI shielding material with tunable absorbing behaviors comprising of low-budget ketjen black (K-CB) reinforced poly(methyl methacrylate) (PMMA) nanocomposites have been prepared using simple solvent assisted solution mixing technique followed by hot compression technique. The morphological investigation revealed the homogeneous distribution of K-CB and strong interfacial interaction in PMMA matrix, which validated the strong reinforcement and other intriguing properties of the nanocomposites. The PMMA nanocomposites showed a low percolation threshold (2.79 wt%) and excellent electrical conductivity due to the formation of 3D conductive network like architecture within the polymer matrix. Specifically, the 10 wt% K-CB nanocomposite possessed a superior EMI shielding performance of about 28 dB for X-band frequency range. Further, a huge change in EMI shielding performance of PMMA nanocomposites is observed with varying thickness. The brand new K-CB decorated PMMA nanocomposites are expected to open the door for next-generation cost-effective EMI shielding materials for academic and industrial applications. 相似文献
6.
João Paulo Ferreira Santos Guilherme Henrique França Melo André Marino Gonçalves José Antonio Eiras Rosario Elida Suman Bretas 《应用聚合物科学杂志》2018,135(34)
Flexible conductive nanocomposites with the ability of self‐assembly into well‐ordered structures are promising multifunctional materials for energy conversion and storage devices. In this work, flexible nanocomposites based on multi‐walled carbon nanotubes (MWCNTs) and poly(styrene‐butadiene‐styrene) (SBS) were obtained by solution casting, followed by a post‐annealing treatment, during 7 days at 110 °C, to enable the self‐organization of the SBS. The impact of the MWCNTs on the self‐assembly was studied by atomic force microscopy and Small angle X‐rays scattering, and the conductivity of these nanocomposites was analyzed over the broadband frequency range, that is, 10?1–106 Hz. The results revealed that the lower MWCNTs loadings (~0.2 v %) were the most suitable to achieve a conductive network through the SBS, maintaining self‐assembled domains. These domains include hexagonally packed cylinders and alternating lamellae. Furthermore, at loadings above 1 v %, the impact of further MWCNTs addition on the conductivity was marginal over the whole frequency range and the self‐assembly tendency was progressively reduced. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46650. 相似文献
7.
In this work, electrical conductivity and thermo‐mechanical properties have been measured for carbon nanotube reinforced epoxy matrix composites. These nanocomposites consisted of two types of nanofillers, single walled carbon nanotubes (SW‐CNT) and electrical grade carbon nanotubes (XD‐CNT). The influence of the type of nanotubes and their corresponding loading weight fraction on the microstructure and the resulting electrical and mechanical properties of the nanocomposites have been investigated. The electrical conductivity of the nanocomposites showed a significantly high, about seven orders of magnitude, improvement at very low loading weight fractions of nanotubes in both types of nanocomposites. The percolation threshold in nanocomposites with SW‐CNT fillers was found to be around 0.015 wt % and that with XD‐CNT fillers around 0.0225 wt %. Transmission optical microscopy of the nanocomposites revealed some differences in the microstructure of the two types of nanocomposites which can be related to the variation in the percolation thresholds of these nanocomposites. The mechanical properties (storage modulus and loss modulus) and the glass transition temperature have not been compromised with the addition of fillers compared with significant enhancement of electrical properties. The main significance of these results is that XD‐CNTs can be used as a cost effective nanofiller for electrical applications of epoxy based nanocomposites at a fraction of SW‐CNT cost. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
8.
Nanocomposites of blends of polymethylmethacrylate (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with multi‐walled carbon nanotubes (MWCNTs) were prepared by melt mixing in a twin‐screw extruder. The dispersion state of MWCNTs in the matrix polymers was investigated using transmission electron microscopy. Interestingly enough, in most of the nanocomposites, the MWCNTs were observed to be mainly located at SAN domains, regardless of the SAN compositions in the PMMA/SAN blend and of the processing method. One possible reason for this morphology may be the π–π interactions between MWCNTs and the phenyl ring of SAN. The shift in G‐band peak observed in the Raman spectroscopy may be the indirect evidence proving these interactions. The percolation threshold for electrical conductivity of PMMA/SAN/MWCNT nanocomposites was observed to be around 1.5 wt %. Nanocomposites with PMMA‐rich composition showed higher electrical conductivity than SAN‐rich nanocomposites at a fixed MWCNT loading. The dielectric constant measurement also showed composition‐dependent behavior. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
9.
The damping properties in blends of poly(styrene‐b‐isoprene‐b‐styrene) (SIS) and hydrogenated aromatic hydrocarbon (C9) resin were investigated by dynamic mechanical analysis. SIS exhibited two independent peaks of loss factor (tan δ) corresponding to the glass transition of polyisoprene (PI) and polystyrene (PS) segments, respectively. The addition of hydrogenated C9 resin had a positive impact on the damping of SIS. With the increasing softening point and content of the resin, the main tan δ peak shifted to higher temperatures and the useful damping temperature range was broadened. Addition of mica or PS was found to widen the effective damping range evidently in the high‐temperature region, especially when PS was mixed in the solid state. It was concluded that the dispersed PS domains played a role of reinforcing fillers at low temperatures and served as a polymer component with a tan δ peak due to its glass transition at the high temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4157–4164, 2006 相似文献
10.
The addition of various particulate nano‐carbon (PNC) fillers to heat‐resistant poly(vinylidene fluoride) (PVDF) was carried out to prepare conductive composites for use in electromagnetic interference (EMI) shielding application. Three different PNC fillers, namely N472 (Vulcan XC‐72), N550 (Fast Extruding Furnace) and N774 (Semi‐Reinforcing Furnace), were used in various concentrations to prepare composite systems PVDF/N472, PVDF/N550 and PVDF/N774 by solution casting followed by a moulding technique. These PNC fillers have a particle size at the nanometre level, but they have an aggregating tendency; both these characteristics influence the properties of composites to which such fillers are added. The percolation threshold of the PVDF/PNC composites was theoretically determined using the sigmoidal Boltzmann model and classical theory and compared. Theoretical models were also used to predict composition‐dependent electrical conductivity. The electrical conductivity is correlated to that of EMI shielding effectiveness at ambient temperature. © 2019 Society of Chemical Industry 相似文献
11.
Guoliang Wu Songjun Zeng Encai Ou Puren Yu Yuanqin Xiong Weijian Xu 《应用聚合物科学杂志》2011,120(2):1162-1169
Acrylic acid was crosslinked with N,N′‐methylenebisacrylamide and converted to bioactive hydrogels by neutralization with different amino containing compounds. Several amino containing compounds were used such as 2‐aminopyridine, triethanol amine, hexamethylenetetramine (HMTA), pyridine, and imidazole. The best crosslinker ratio was determined in addition to the maximum absorbed water in different mediums. The antibacterial activity of the prepared gels were examined against examples of Gram‐positive (Staphylococcus aureus) and Gram‐negative bacteria (Escherichia coli) using agar plate method. The study was extended by evaluating one of prepared gels in columns as models for water filters. All prepared gels showed antibacterial action in agar plate method against both bacterium and the column method using one of the prepared gels showed excellent filtration and biocidal action. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
12.
The morphology and mechanical properties of a styrene–ethylene/butylene–styrene triblock copolymer (SEBS) incorporated with high‐density polyethylene (HDPE) particles were investigated. The impact strength and tensile strength of the SEBS matrix obviously increased after the incorporation of the HDPE particles. The microstructure of the SEBS/HDPE blends was observed with scanning electron microscopy and polar optical microscopy, which illustrated that the SEBS/HDPE blends were phase‐separation systems. Dynamic mechanical thermal analysis was also employed to characterize the interaction between SEBS and HDPE. The relationship between the morphology and mechanical properties of the SEBS/HDPE blends was discussed, and the toughening mechanism of rigid organic particles was employed to explain the improvement in the mechanical properties of the SEBS/HDPE blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
13.
Poly(ethylene terephthalate)/multiwalled carbon nanotubes (PET/MWCNTs) with different MWCNTs loadings have been prepared by in situ polymerization of ethylene glycol (EG) containing dispersed MWCNTs and terephthalic acid (TPA). From scanning electronic microscopy images of nanocomposites, it can be clearly seen that the PET/MWCNTs composites with low‐MWCNTs contents (0.2 and 0.4 wt %) get better MWCNTs dispersion than analogous with high‐tube loadings (0.6 and 0.8 wt %). The nonisothermal crystallization kinetics was analyzed by differential scanning calorimetry using Mo kinetics equation, and the results showed that the incorporation of MWCNTs accelerates the crystallization process obviously. Mechanical testing shows that, in comparison with neat PET, the Young's modulus and the yield strength of the PET nanocomposites with incorporating 0.4 wt % MWCNTs are effectively improved by about 25% and 15%, respectively. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
14.
The preparation of high‐dielectric poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) composites containing functionalized single‐walled carbon nanotubes (f‐SWCNTs) noncovalently appended with dibutyltindilaurate are reported herein. Transmission electron microscopy and X‐ray photoelectron and Raman spectroscopy confirmed the noncovalent functionalization of the SWCNTs. The SEBS‐f‐SWCNT composites exhibited enhanced mechanical properties as well as a stable and high dielectric constant of approximately 1000 at 1 Hz with rather low dielectric loss at 2 wt% filler content. The significantly enhanced dielectric property originates from the noncovalent functionalization of the SWCNTs that ensures good dispersion of the f‐SWCNTs in the polymer matrix. The f‐SWCNTs also acted as a reinforcing filler, thereby enhancing the mechanical properties of the composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
15.
Heriberto Rodríguez‐Tobías Graciela Morales Oliverio Rodríguez‐Fernández Pablo Acuña 《应用聚合物科学杂志》2013,127(6):4708-4718
A series of poly(acrylonitrile‐butadiene‐styrene)/ZnO nanocomposites with different ZnO nanoparticles content were synthesized by a mass‐suspension polymerization process. Nanocomposites obtained through this technique presented high impact resistance despite the presence of agglomerates for high ZnO nanoparticles content so that, these samples were subjected to twin‐screw extrusion. The extrusion led to a dramatic morphological change and increased in impact resistance, higher than 100% in most of the cases. On the other hand, the higher the ZnO content, the higher the UV blocking (>95% for 1 and 3% of ZnO) for both materials, before and after extrusion. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
16.
Sheng‐Yen Wu Yuan‐Li Huang Chen‐Chi M Ma Siu‐Ming Yuen Chih‐Chun Teng Shin‐Yi Yang Chorng H. Twu 《Polymer International》2012,61(7):1084-1093
A series of polyimide‐based nanocomposites containing polyimide‐grafted multi‐walled carbon nanotubes (PI‐g MWCNTs) and silane‐modified ceramic (aluminium nitride (AlN)) were prepared. The mechanical, thermal and electrical properties of hybrid PI‐g MWCNT/AlN/polyetherimide nanocomposites were investigated. After polyimide grafting modification, the PI‐g MWCNTs showed good dispersion and wettability in the polyetherimide matrix and imparted excellent mechanical, electrical and thermal properties. The utilization of the hybrid filler was found to be effective in increasing the thermal conductivity of the composites due to the enhanced connectivity due to the high‐aspect‐ratio MWCNT filler. The use of spherical AlN filler and PI‐g MWCNT filler resulted in composite materials with enhanced thermal conductivity and low coefficient of thermal expansion. Results indicated that the hybrid PI‐g MWCNT and AlN fillers incorporated into the polyetherimide matrix enhanced significantly the thermal stability, thermal conductivity and mechanical properties of the matrix. Copyright © 2012 Society of Chemical Industry 相似文献
17.
The effect of processing routes on the thermal and mechanical properties of poly(urethane‐isocyanurate) nanocomposites 下载免费PDF全文
A systematic investigation of four processing routes was implemented so as to evaluate the thermal and mechanical properties of nanosilica (NS) reinforced poly(urethane‐isocyanurate) nanocomposites (NC). The NS dispersion in the Polmix and the Isomix routes was performed in the polyol and the isocyanate precursor, respectively. The Isopol and the Solvmix routes consisted on the dispersion of the filler after the mixing of the precursors and with the aid of solvents, respectively. The NS dispersion, fractography (SEM, TEM), flexural and tensile mechanical properties, thermogravimetric analysis and FTIR analysis of NCs was performed as a function of processing route, isocyanate index, and NS concentration. Each route produced a NC with distinct properties, which were correlated to the NS agglomeration degree and how the NS affected the thermal transitions of the HS and the relative ratio of urethane and isocyanurate chemical groups. For example, the NC prepared with the Polmix route had substantial improvements of σt and εt of around +40 and +52%, respectively and an improved thermal resistance of the Hard Segments. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42750. 相似文献
18.
Fabrication and properties of carbon nanotube/styrene–ethylene–butylene–styrene composites via a sequential process of (electrostatic adsorption aided dispersion)‐plus‐(melt mixing) 下载免费PDF全文
Carbon nanotube (CNT)/styrene–ethylene–butylene–styrene (SEBS) composites were prepared via a sequential process of (electrostatic adsorption assisted dispersion)‐plus‐(melt mixing). It was found that CNTs were uniformly embedded in SEBS matrix and a low percolation threshold was achieved at the CNT concentration of 0.186 vol %. According to thermal gravimetric analysis, the temperatures of 20% and 50% weight loss were improved from 316°C and 352°C of pure SEBS to 439°C and 463°C of the 3 wt % CNT/SEBS composites, respectively. Meanwhile, the tensile strength and elastic modulus were improved by about 75% and 181.2% from 24 and 1.6 MPa of pure SEBS to 42 and 4.5 MPa of the 3 wt % CNT/SEBS composite based on the tensile tests, respectively. Importantly, this simple and low‐cost method shows the potential for the preparation of CNT/polymer composite materials with enhanced electrical, mechanical properties, and thermal stability for industrial applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40227. 相似文献
19.
Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi‐walled carbon nanotube/poly(methyl methacrylate) nanocomposites 下载免费PDF全文
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738. 相似文献
20.
We describe the preparation, characterization and physical properties of multiwalled carbon nanotube (MWCNT)‐filled epoxidized natural rubber (ENR) composites. To ensure better dispersion in the elastomer matrix, the MWCNTs were initially subjected to aminopropyltriethoxysilane (APS) treatment to bind amine functional groups (?NH2) on the nanotube surface. Successful grafting of APS on the MWCNT surface through Si–O–C linkages was confirmed using Fourier transform infrared spectroscopy. Grafting of APS on the MWCNT surface was further corroborated using elemental analysis. ENR nanocomposites with various filler loadings were prepared by melt compounding to generate pristine and APS‐modified MWCNT‐filled elastomeric systems. Furthermore, we determined the effects of various filler loadings on the rheometric, mechanical, electrical and thermal degradation properties of the resultant composite materials. Rheometric cure characterization revealed that the torque difference increased with pristine MWCNT loading compared to the gum system, and this effect was more pronounced when silane‐functionalized MWCNTs were loaded, indicating that this effect was due to an increase in polymer–carbon nanotube interactions in the MWCNT‐loaded materials. Loading of silane‐functionalized MWCNTs in the ENR matrix resulted in a significant improvement in the mechanical, electrical and thermal degradation properties of the composite materials, when compared to gum or pristine MWCNT‐loaded materials.© 2013 Society of Chemical Industry 相似文献