首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid and microcellular components made of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly (butylene adipate-co-terephthalate) (PBAT) blend (weight ratio of PHBV:PBAT = 30:70), recycled wood fiber (RWF), and nanoclay (NC) were prepared via a conventional and microcellular-injection molding process, respectively. Morphology, thermal properties, and mechanical properties were investigated. The addition of 10% RWF (both untreated and silane-treated) reduced the cell size and increased the cell density of the microcellular components. Also, the addition of 10% RWF (both untreated and silane-treated) generally increased the specific Young’s modulus and tensile strength, but decreased the specific toughness and strain-at-break in both solid and microcellular components. Moreover, unlike the neat PHBV/PBAT blend, microcellular PHBV/PBAT/RWF (both untreated and silane-treated) composites showed higher specific toughness and strain-at-break compared to their solid counterparts. In addition, higher specific toughness and strain-at-break was observed in the PHBV/PBAT/untreated-RWF composite compared with the PHBV/PBAT/silane-treated RWF composite, particularly in the microcellular components. The degree of PHBV crystallinity increased significantly in both solid and microcellular PHBV/PBAT/RWF composites although the degree of PHBV crystallinity in the solid components was slightly higher than that of their microcellular counterparts. The effects of adding 2% nanoclay on the properties of the PHBV/PBAT/silane-treated-RWF composite were also investigated. The nanoclays exhibited an intercalated structure in the composites based on XRD analysis and did not induce significant changes in the cell morphology and mechanical properties of the PHBV/PBAT/silane-treated-RWF composite. However, it did improve its thermal stability.  相似文献   

2.
In the present study, biogenic silica nanoparticles (bSNPs) were synthesized from groundnut shells, and thoroughly characterized to understand its phase, and microstructure properties. The biopolymer was synthesized from yeast Wickerhamomyces anomalus and identified as Poly (3‐hydroxybutyrate‐co ‐3‐hydroxyvalerate) (PHBV) by GC‐MS and NMR analysis. The bSNPs were reinforced to fabricate PHBV/SiO2 nanocomposites via solution casting technique. The fabricated PHBV/SiO2 nanocomposites revealed intercalated hybrid interaction between the bSNPs and PHBV matrix through XRD analysis. PHBV/SiO2 nanocomposites showed significant improvement in physical, chemical, thermo‐mechanical and biodegradation properties as compared to the bare PHBV. The cell viability study revealed excellent biocompatibility against L929 mouse fibroblast cells. The antibacterial activity of PHBV/SiO2 nanocomposites was found to be progressively improved upon increasing bSNPs concentration against E. coli and S. aureus.Inspec keywords: X‐ray diffraction, microorganisms, antibacterial activity, nanoparticles, cellular biophysics, nanofabrication, silicon compounds, nanocomposites, filled polymers, nanomedicine, biomedical materials, casting, biodegradable materials, food packaging, food safety, biological NMROther keywords: antibacterial applications, poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate), PHBV matrix, biodegradable PHBV‐SiO2 nanocomposite, thermomechanical biodegradation properties, biogenic silica nanoparticles, groundnut shells, microstructure properties, biopolymer, yeast Wickerhamomyces anomalus, GC‐MS, NMR analysis, food packaging, intercalated hybrid interaction, XRD analysis, cell viability study, solution casting, SiO2   相似文献   

3.
Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, was used in the preparation of polymeric microparticles containing andiroba oil. Andiroba oil, extracted from the seeds of Carapa guianensis, has insecticide and medicinal properties. Microparticles of PHBV were prepared using o/w simple emulsion followed by solvent evaporation. The properties of these microparticles, such as encapsulation efficiency, and morphological aspects were investigated. Several characterization techniques were used: FTIR, XRD, DSC, TGA-DTA, SEM, and particle-size analysis. The efficiency of encapsulation of andiroba oil was determined by UV-spectroscopy. The results confirmed that PHBV microspheres containing andiroba oil were obtained.  相似文献   

4.
为了得到刚性与韧性平衡的聚乳酸(PLA)基可生物降解共混材料,通过熔融共混挤出法制备了不同质量比的PLA/己二酸-对苯二甲酸-丁二酯共聚物(PBAT)/聚(3-羟基丁酸-co-羟基戊酸共聚酯(PHBV)可全生物降解共混材料,采用SEM、TG、DSC、毛细管流变仪和万能材料试验机对PLA/PBAT/PHBV共混材料的形态结构、热性能、流变性能和力学性能进行了研究。结果表明:PLA/PBAT/PHBV共混材料的热失重起始分解温度相对纯PHBV提高了45 ℃,热稳定性提高;共混体系中各组分的玻璃化转变温度与单一体系相比几乎无变化,PLA/PBAT/PHBV共混体系为完全不相容体系,同时PBAT和PHBV的加入阻碍了PLA的冷结晶;PLA/PBAT/PHBV 共混体系的共混形态呈“海-岛”分布,PBAT和PHBV均匀地分散于PLA基体中,相界面分明;随着PBAT含量增加,PLA/PBAT/PHBV共混材料熔体的流动性增加,温度变化对黏度的影响变大;PLA/PBAT/PHBV质量比为70/20/10的共混材料可在保留纯PLA 60%拉伸应力的同时,拉伸应变提高到纯PLA的2.6倍,韧性得到改善。所得结论表明PLA/PBAT/PHBV质量比为70/20/10的共混材料的综合力学性能较纯PLA好。   相似文献   

5.
This paper investigates the influence of diffusion layer (solder layer) thickness (δ) on interface diffusion in both thermal aging and electro-thermal coupling aging. The different δ (δ = 60, 120 and 240 μm) of Cu/Sn–3.0Ag–0.5Cu (SAC305)/Cu butt solder joints are used. The results indicate that the geometrical size (solder layer thickness) of solder joint has significant effect on element diffusion behavior. The diffusion coefficient, time exponent, element concentrations and diffusion flux are greatly dependent upon δ. The effects of δ on the interface diffusion is different between thermal aging and electro-thermal coupling aging, due to driving force for diffusion is different. During thermal aging, concentration gradient is the main driving force of diffusion, and diffusion coefficient, time exponent and diffusion flux are relatively low for a thin solder layer. However, under electro-thermal coupling condition, the electron wind force provides the dominating driving force for diffusion, and diffusion coefficient and diffusion flux of thin δ are significantly larger than the thick ones. The Cu concentration of the area near interface is relatively high for a thin solder layer in both tests. Under the same experimental temperature, the effects of δ on the electro-thermal coupling aging are more obvious than thermal aging.  相似文献   

6.
Injection molded biocomposites from a new biodegradable polymer blend based matrix system and miscanthus natural fibers were successfully fabricated and characterized. The blend matrix, a 40:60 wt% blend of poly(butylene adipate-co-terephthalate), PBAT and poly(butylene succinate), PBS was chosen based on their required engineering properties for the targeted biocomposite uses. A big scientific challenge of biocomposites is in improving impact strength within the desired tensile and flexural properties. The stiffness–toughness balance is one of the biggest scientific hurdles in natural fiber composites. Thus, the key aspect of the present study was in investigating an in-depth statistical approach on influence of melt processing parameters on the impact strength of the biocomposite. A full factorial experimental design was used to predict the statistically significant variables on the impact strength of the PBS/PBAT/miscanthus biocomposites. Among the selected processing parameters, fiber length has a most significant effect on the impact strength of the biocomposites.  相似文献   

7.
Both polylactide (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable polymers. They are thermoplastics which can be processed using conventional polymer processing methods. In this study, microfibrillar-reinforced composites (MFC) based on PLA/PBAT (PLA/Ecoflex®) blends in different weight ratios were prepared under industry-relevant conditions by melt extrusion followed by continuous cold drawing of the extrudates. Strip-like specimens (films) and plates (laminates) of the drawn blends were prepared by compression molding (CM) at processing temperature above the melting temperature (T m) of PBAT, but below T m of PLA. SEM and WAXS observations show that the extruded blend components are isotropic, but become highly oriented after drawing, and they are converted into MFC-structured polymer–polymer composites after CM. An effect of PLA microfibrils on the non-isothermal crystallization of the Ecoflex during cooling from the melt, associated with the formation of crystalline regions of the matrix around the fibrils, was observed. Depending on the blend composition, the compression-molded samples possess a 3- to 7-time higher tensile strength as well as a 15–30 higher modulus than the neat Ecoflex. In addition, the MFC-structured plates exhibited superior barrier properties compared to the neat Ecoflex, e.g., the oxygen permeability decreased by up to 5 times.  相似文献   

8.
Graphene nanoplatelets (GNPs) were used as multifunctional nanofiller to enhance thermal and mechanical properties as well as electrical conductivity of two different biodegradable thermoplastics: poly lactide (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Morphological investigations showed different levels of GNP dispersion in the two matrices, and consequently physical properties of the two systems exhibited dissimilar behaviours with GNP incorporation. Crystallinity of PLA, determined from differential scanning calorimetry, was observed to increase markedly with addition of GNPs in contrast to the decrease in crystallinity of PBAT. Isothermal and non-isothermal thermogravimetric analyses also revealed a more significant delay in thermal decomposition of PLA upon addition of GNPs compared to that of PBAT. Furthermore, results showed that increasing GNP content of PLA and PBAT nanocomposites influenced their Young’s modulus and electrical conductivity in different ways. Modulus of PBAT increased continuously with increasing GNP loading while that of PLA reached a maximum at 9 wt% GNPs and then decreased. Moreover, despite the higher conductivity of pure PBAT compared to pure PLA, conductivity of PLA/GNP nanocomposites overtook that of PBAT/GNP nanocomposites above a certain GNP concentration. This demonstrated the determining effect of nanoplatelets dispersion state on the matrices properties.  相似文献   

9.
The distiller’s dried grains with solubles (DDGS) were treated by smashing and water washing processes. The treatment effects on DDGS were analyzed, and the results showed that the thermal stability and the hydrophobicity of DDGS were improved by the treatment processes. The flame retarded biocomposites of poly(lactic acid) (PLA) with DDGS and degradable polymeric flame retardant resorcinol di(phenyl phosphate) (RDP) were prepared. The prepared biocomposites had good mechanical properties and the tensile strength of the biocomposite containing 15 wt% RDP and 15 wt% DDGS reached approximately 53 MPa. Meanwhile, using the limited oxygen index (LOI) and the underwriters laboratory (UL-94) tests, for the biocomposite, the LOI value was approximately 27.5% and V-0 rating in UL-94 was attained. Furthermore, the peak heat release rate of this biocomposite was reduced to 275 kW/m2 compared with 310 kW/m2 for pure PLA. After burning of the biocomposites, compact and coherent charred layer was formed and the char residues were analyzed in detail.  相似文献   

10.
The forsterite/cordierite ceramic composites are prepared by standard ceramic method, which properties and microstructures are characterized by X-ray diffraction and Scanning electron microscopy. It is found that the values of volume resistivities rapidly decline from 1 × 1013 to 103 Ω cm as the testing temperatures increase from 20 to 600 °C and the resistivity transition temperatures of forsterite, cordierite and their composites are at about 300, 200 and 250 °C, respectively. The values of ε r and tan δ are somewhat independent of the temperatures between 20 and 200 °C, but increase rapidly between 200 and 600 °C. The thermal expansion coefficient of ceramic composites decline with the cordierite content increasing and could change from about 2.5 × 10?6–10.5 × 10?6 °C?1, in which the major phases are Mg2SiO4 and Mg2Al4Si5O18.  相似文献   

11.
Two types of fibers were prepared by using bio-based materials: a mono-filament made from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a multi-filament made from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and polylactic acid (PLA) blend. The two fibers were evaluated for mechanical properties, biocompatibility and degradability for the potential application as medical sutures. The PHBHHx fiber showed remarkable biocompatibility by H.E. Stainning, with very little impact to the surrounding tissues. The degradation of the fiber was observed by SEM after implantation for 36 weeks, and the major degradation product was detected after 96 weeks. Consistently, the PHBHHx fiber maintained more than half of the mechanical properties after 96 weeks. The other fiber was prepared by twisting PHBV/PLA blend strands to a bunch, and showed high biocompatibility and relatively high degradability. The bunched structure loosed after 36 weeks of implantation. These low-cost and easily prepared fibers have great potential in medical applications, since they could avoid the formation of fibrous capsule, reduce the size of scar, and degrade into non-toxic and even beneficial products.  相似文献   

12.
The effects of Bi4Ti3O12 (BIT) on phase purity and dielectric properties of BaTiO3 (BT) ceramics have been investigated. Results show that BT samples doped with 1–3 mol% BIT adopt a single phase. However, secondary phase Bi2Ti2O7 is observed when BIT content exceeds 3 mol%. Tetragonality and the Curie temperature (T C) firstly increase and then decreases with an increase in BIT content. The 3 mol% BIT-doped BT ceramic sintered at 1,250 °C exhibits good dielectric properties of εr = 2,692, tan δ = 0.0152, ρv = 5.8 × 1012 Ω cm, and the variation of dielectric constant as compared with that at room temperature is about ?20 % at ?55 °C and less than 11 % at 150 °C. It is found that the addition of calcium borosilicate glass (CBS) in BT-BIT ceramics can effectively lower the sintering temperature from 1,250 to 1,050 °C and further enhance the capacitance temperature stability. The permittivity decreases with an increase in CBS content from 1 to 10 wt%. Secondary phase BaBi4Ti4O15 exists in the CBS doped BT-3BIT systems. All of CBS doped samples satisfy the X8R specification. Typically, the sample with 3 wt% CBS has εr = 1,789, tan δ = 0.0115, ρv = 9.67 × 1012 Ω cm. The variation of permittivity as compared with that at room temperature is about ?12 % at ?55 °C and less than ± 11 % at 150 °C. The as-prepared materials have great potential as EIA X8R-type multilayer ceramic capacitors.  相似文献   

13.
Ceramics in PMN–PZT system with formula xPb(Mg1/3Nb2/3)O3–(1 ? x)Pb(Zr0.4Ti0.6)O3 (where x = 0.32, 0.35, 0.38, 0.41) were prepared by the conventional oxide-mixed method. The phase diagram, composition dependent ferroelectric, dielectric, field-induced strain and piezoelectric properties were systematically investigated. X-ray diffraction analysis indicated that as-prepared ceramics were of pure perovskite phase and the possible morphotropic phase boundary (MPB) between the tetragonal and pseudo-cubic phase compositions were located near the PMN content of x = 0.38, confirmed by their corresponding ferroelectric, dielectric, field-induced strain and piezoelectric properties. The composition with x = 0.38 possessed the optimum electrical properties since its composition locate close to the MPB where exist multiple polarization directions facilitates domain reorientation and consequently enables the superior electrical properties. The room temperature dielectric permittivity ε r , tangent loss tan δ, piezoelectric coefficient d 33, electromechanical coupling factor kp, remnant polarization P r , hysteresis loop squareness R sq and longitudinal strain of 0.38PMN–0.62PZT ceramics are 2441, 2.08 %, 662 pC/N, 63.5 %, 37.2 μC/cm2, 1.51 and 1.9 ‰, respectively, which mean it has a great promise for actuator applications.  相似文献   

14.
The aims of this study were to fabricate biopolymer and biocomposite scaffolds for bone tissue engineering by an air pressure-aided deposition system and to carry out osteoblast cell culture tests to validate the biocompatibility of fabricated scaffolds. A mPEG–PCL–mPEG triblock copolymer was synthesized as a biopolymer material. Biocomposite material was composed of synthesized biopolymer and hydroxyapatite (HA) with a mean diameter of 100 μm. The weight ratio of HA added to the synthesized biopolymer was 0.1, 0.25, 0.5 and 1. The experimental results show that the maximum average compressive strength of biocomposite scaffolds, made of weight ratio 0.5, with mean pore size of 410 μm (porosity 81%) is 18.38 MPa which is two times stronger than that of biopolymer scaffolds. Osteoblast cells, MC3T3-E1, were seeded on both types of fabricated scaffolds to validate the biocompatibility using methylthianzol tetrazolium (MTT) assay and cell morphology observation. After 28 days of in vitro culturing, the seeded osteoblasts were well distributed in the interior of both types of scaffolds. Furthermore, MTT experimental results show that the cell viability of the biocomposite scaffold is higher than that of the biopolymer scaffold. This indicates that adding HA into synthesized biopolymer can enhance compressive strength and the proliferation of the osteoblast cell.  相似文献   

15.
Biocomposite fiber has been developed from wood pulp and polypropylene (PP) by an extrusion process and the generated biocomposite fibers were characterized to understand the nature of interaction between wood pulp reinforcement and PP matrix. The use of maleated polypropylene (MAPP) as a compatibilizer was investigated in relation to the fiber microstructure. Fiber length analysis showed that most of the fiber lengths lie within the range of 0.2–1.0 mm. Changes in absorption peaks were observed in Fourier transform infrared spectroscopy of biocomposite fibers as compared to the virgin wood pulp, which indicated possible chemical linkages between the fiber and polymer matrix. SEM study was carried out to observe fiber–matrix adhesion at the interface within the composite and MAPP treatment was found to be effective in increasing reinforcing fibers–matrix compatibility. X-ray computed tomography was conducted to understand the internal architecture of the biocomposite fiber and the results showed that with incorporation of additional wood pulp content, the fiber becomes more aligned along length axis possibly due to compression and die geometry of the extruder.  相似文献   

16.
In-chain multi-functionalized random butadiene–styrene copolymer possessing definite dimethylamino groups along the polymer backbone, poly(butadiene-co-styrene-co-1,1-bis(4-dimethylaminophenyl)ethylene) (poly(Bd-co-St-co-BDADPE)), has been designed and synthesized via living anionic copolymerization of excess BDADPE with butadiene and styrene in benzene at 50 °C, using sec-butyllithium as initiator. The incorporation of BDADPE unit results in increases both in glass transition temperature and thermal decomposition temperature of the terpolymers. Such multiple dimethylamino groups along the rubber backbone effectively improve the dispersity of carbon black (CB) in the corresponding composites, as verified by scanning electronic microscopy observation. Also the tensile strength, elongation at break and the value of dynamic loss coefficient at 0 °C of the CB/poly(Bd-co-St-co-BDADPE) vulcanized composites, are significantly enhanced. This in-chain multi-functionalization of matrix rubber via anionic copolymerization employing BDADPE as copolymerizable monomer, provides a facile and effective method to prepare CB-based rubber composites with improved tensile strength and elongation at break, as well as good wet skid resistance.  相似文献   

17.
A compatibilizer, poly(3-hexylthiophene)-graft-poly(t-butyl acrylate-co-acrylic acid) was synthesized, where the acrylic aid was formed by hydrolysis of t-butyl acrylate unit. It has been identified that poly(3-hexylthiophene) backbone of the compatibilizer interacts with multi-walled carbon nanotubes (MWCNTs) via ππ interaction and the acrylic acid unit of the graft chain interacts with Nylon 66 (N66) matrix via hydrogen bonding. When a small amount of compatibilizer was added to N66/MWCNT composites, MWCNTs were more homogeneously dispersed in N66 matrix than the case without compatibilizer. As a consequence, mechanical and electrical properties of the composites with compatibilizer were largely improved as compared with those of composites without compatibilizer.  相似文献   

18.
Fully biobased composite materials were fabricated using a natural, lignocellulosic filler, namely oak wood flour (OWF), as particle reinforcement in a biosynthesized microbial polyester matrix derived from poly(β-hydroxybutyrate)-co-poly(β-hydroxyvalerate) (PHBV) via an extrusion injection molding process. The mechanisms and effects of processing, filler volume percent (vol%), a silane coupling agent, and a maleic anhydride (MA) grafting technique on polymer and composite morphologies and tensile mechanical properties were investigated and substantiated through calorimetry testing, scanning electron microscopy, and micromechanical modeling of initial composite stiffness. The addition of 46 vol% silane-treated OWF improved the tensile modulus of neat PHBV by 165%. Similarly, the tensile modulus of MA-grafted PHBV increased 170% over that of neat PHBV with a 28 vol% addition of untreated OWF. Incorporation of OWF reduced the overall degree of crystallinity of the matrix phase and induced embrittlement in the composites, which led to reductions in ultimate tensile stress and strain for both treated and untreated specimens. Deviations from the Halpin–Tsai/Tsai–Pagano micromechanical model for composite stiffness in the silane and MA compatibilized specimens are attributed to the inability of the model both to incorporate improved dispersion and wettability due to fiber–matrix modifications and to account for changes in neat PHBV and MA-grafted PHBV polymer morphology induced by the OWF.  相似文献   

19.
The structure, morphology, thermal behaviors and cytotoxicity of novel hydrogels, composed of poly(N-isopropylacrylamide)(PNIPAM) and biodegradable polyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under nanoclay hectorite “Laponite XLG” severed as physical cross-linker, were characterized by X-ray diffraction, scanning electron microscopy, gravimetric method, differential scanning calorimetry, and cell culture experiments. It was found that, due to the introduction of hydrophobic PHBV, the homogeneity of interior pore in the pure PNIPAM nanocomposite hydrogel was disrupted, the transparency and swelling degree gradually decreased. Although the weight ratio between PHBV and NIPAM increased from 5 to 40 wt.%, the volume phase transition temperature (VPTTs) of hydrogel were not altered compared with the pure PNIPAM nanocomposite hydrogel. No matter what PHBV content, the PHBV/PNIPAM/Hectorite hydrogels always exhibit good stimuli-responsibility. In addition, human hepatoma cells(HepG2) adhesion and spreading on the surface of PHBV-based hydrogels was greatly improved than that of pure PNIPAM nanocomposite hydrogel at 37 °C due to the introduction of PHBV.  相似文献   

20.
《Materials Letters》2005,59(28):3558-3562
In this study, a new method of preparing porous ultra-fine fibers via photo-crosslinking was developed. Ultra-fine poly(vinyl cinnamate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PVCi/PHBV) blend fibers were electrospun and then the PVCi was photo-crosslinked by UV irradiation. PVCi and PHBV were immiscible and the phase separation proceeded during the electrospinning process. After the photo-crosslinking of PVCi, PHBV was extracted from the blend fibers with chloroform. The average pore sizes in the remaining ultra-fine PVCi fibers were increased with increasing the content of PHBV in the ultra-fine PVCi/PHBV fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号