首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two sets of Er3+-doped alkaline-free glass systems, MgF2–BaF2–Ba(PO3)2–Al(PO3)3 (MBBA) and Bi(PO3)3–Ba(PO3)2–BaF2–MgF2 (BBBM), have been prepared and investigated with the aim of using them as active media. Radiative lifetimes (τrad) and branching ratios (β) have been obtained for the excited states of Er3+. The absorption spectra were recorded to obtain the intensity parameters (Ωt) which are found to be Ω2 = 4.47 × 10−20 cm2, Ω4 = 1.31 × 10−20 cm2, Ω6 = 0.81 × 10−20 cm2 for the MBBA system and Ω2 = 4.03 × 10−20 cm2, Ω4 = 1.34 × 10−20 cm2, Ω6 = 0.53 × 10−20 for the BBBM system, respectively. The emission cross-section for the 4I13/2 → 4I15/2 transition is determined by the Fuchtbauer–Ladenburg method and found to be 2.35 × 10−20 cm2 and 3.54 × 10−20 cm2 for the MBBA and BBBM system, respectively. Comparison of the measured values to those of Er3+ transitions in other glass hosts suggests that our new glass systems are good candidates for broadband compact optical fiber and waveguide amplifier applications.  相似文献   

2.
Subsequent magnetic transitions were recently reported for the CeScSi-type RScGe (R = rare earth) equiatomic intermetallic compounds. The compounds TbScGe and NdScGe order ferromagnetically at TC = 216 K and TC = 200 K, respectively whereas PrScGe orders antiferromagnetically at TN = 140 K. In addition, PrScGe demonstrates two other magnetic transitions at TC1 = 88 K and TC2 = 80 K in an applied field of 5 kOe. An investigation by neutron diffraction has been now carried out on these phases in an attempt to solve the magnetic structures corresponding to each ordering, and in this article the results obtained are reported. Below the Curie point, the magnetic structure of TbScGe and NdScGe is collinear ferromagnetic. The magnetic moment of Tb atoms coincides with the Z-axis of CeScSi-type unit cell (MTb = 8.63μB at 2 K), whereas the magnetic moment of Nd atoms has the θ = 52(2)° angle with Z-axis (MNd = 3.53(2)μB at 2 K). Below the Néel temperature, TN = 140 K the magnetic structure of PrScGe consists of antiferromagnetic (0 0 2) rare-earth double layers with magnetic moments of the rare earth atoms collinearly ordered. The magnetic moments of Pr atoms (MPr = 1.72(3)μB at 100 K) have the θ = 62(2)° angle with the Z-axis. Between TC1 = 82 K and TC2 = 62 K the conversion of the commensurate antiferromagnetic collinear type structure to the ferrimagnetic collinear type structure with propagation vector K = [0, 0, 1/2] was observed: the magnetic moments of Pr double layers became sine modulated along the Z-axis. Below TC2 = 62 K the magnetic structure of PrScGe compound consists of ferrimagnetic (0 0 1/2) layers (amplitude of Pr magnetic moment MPr = 3.31(9)μB at 5 K).  相似文献   

3.
The structure and anelastic properties of Fe-27 at.%Ge alloy are studied. Long-term annealing of the as-cast alloy at 1273 K leads to homogenising and several transformations take place below 873 K. These low temperature transitions are studied by several methods: X-ray diffraction, calorimetry, vibrating-sample magnetometry and internal friction, and are related to magnetic transitions in the different phases. A high stability of the hexagonal (D019) phase at room temperature is recorded. The hexagonal β (B81) phase is also detected in the alloy at room temperature, while the presence of the ′ and phases is doubtful. A broad internal friction relaxation peak with the relaxation strength of Δ = 0.0036, the activation energy of about 1.78 eV and the preexponential relaxation time of τ0 = 2 × 10−17 s was discovered and classified as the Zener peak in both the and β phases.  相似文献   

4.
A neutron diffraction investigation has been carried out on the trigonal La2O3-type (hP5, space group , No. 164; also CaAl2Si2-type) YbMn2Sb2 intermetallic. A two-step synthesis route has been tried in this work, and successfully utilised to prepare single phase samples of this compound. This study shows that YbMn2Sb2 presents antiferromagnetic ordering below 120 K. The magnetic structure of this intermetallic consists of antiferromagnetically coupled magnetic moments of the manganese atoms, in the Mn1 (1/3, 2/3, ZMn) and Mn2 (2/3, 1/3, 1 − ZMn) sites; the direction of magnetic moments of manganese atoms forming a φ and a θ angle, respectively with the X- and the Z-axis. At 4 K the magnetic moment of the Mn1 atom is μMn = 3.6(1) μB, with φ = 0° and θ = 62(4)°, whilst the Mn2 atom has a magnetic moment μMn = 3.6(1) μB, with φ = 0° and θ = 242(4)°. On the other hand, in this compound no local moment was detected on the Yb site.  相似文献   

5.
A new compound CePt2+xSb2−y (x = 0.125, y = 0.25) was synthesized by arc-melting of the elements. The chemical and structural characterizations were carried out at room temperature on as-cast samples using X-ray diffractometry, metallographic analysis and EDS-microanalysis. According to the results of X-ray single crystal diffraction this antimonide crystallizes in I4cm space group (no. 108), Z = 32, ρ = 12.19 Mg/m3, μ = 89.05 mm−1 (a = 12.5386(3) Å, c = 21.4692(6) Å (crystal I) and a = 12.5455(2) Å, c = 21.4791(5) Å (crystal II)). The structure and composition were confirmed by powder X-ray diffraction (a = 12.4901(2) Å, c = 21.3620(4) Å) and EDS-microanalysis respectively. Isotypic compounds were observed with La and Pr from X-ray powder diffraction of as-cast alloys at room temperature (a = 12.6266(4) Å, c = 21.4589(6) Å for LaPt2+xSb2−y and a = 12.5184(5) Å, c = 21.4178(7) Å for PrPt2+xSb2−y). The CePt2+xSb2−y structure is derived from CaBe2Ge2 (a = 2a0 − 2b0, b = 2a0 + 2b0, c = 2c0) and comprises a new atomic arrangement with both vacancy on 4(b) pyramidal site and substitution of antimony atoms (X) by platinum (B) in the B–XX–B layers (referring to the subcell structure) forming two B––1/2B1/2XX–3/4B and two X–BB–X layers per cell. The structure of CePt2+xSb2−y is compared with those reported before for URh1.6As1.9 and CeNi1.91As1.94.  相似文献   

6.
New experiments have been performed on the brittle compressive failure of columnar-grained, S2 fresh-water ice, proportionally loaded biaxially across the columns at −10 °C at 4.5 × 10−3 s−1. The results and analysis show that under higher confinement (σ22/σ11 > 0.2) where terminal failure occurs via across-column cleavage and spalling out of the loading plane, a combination of wing crack growth and Euler buckling of deformation-induced thin plates underlies the process.  相似文献   

7.
A new ternary compound Ce(Au,Sb)2, with a homogeneity range has been observed from X-ray powder diffraction of as cast alloys, a = 4.743–4.712 Å, c = 3.567–3.768 Å. Its crystal structure was investigated by X-ray diffraction from Ce(Au1−xSbx)2 (x = 0.266) single crystal: CAD-4 automatic diffractometer, Mo K radiation, a = 4.7256(6) Å, c = 3.6711(6) Å, P6/mmm space group, V = 70.997(17) Å3, Z = 1, ρ = 10.732 Mg/m3, μ = 76.369 mm−1, R1 = 0.0415, wR2 = 0.0793 for 99 reflections with I > 2σ(I0). The coordination polyhedron of X (X = 0.734Au + 0.266Sb) atom is a full-capped trigonal prism [XCe6X3X2]. Ce atom is coordinated by 14 atoms: [CeX12Ce2]. The compound is isotypic with UHg2 structure, a deformation derivative of AlB2 structure type. It forms isostructural compounds with La and Pr.  相似文献   

8.
The studies of the thermoelectric power and band structure calculations for CeNi4Si are reported. These studied are supported by magnetic susceptibility, electrical resistivity, specific heat and X-ray photoemission spectroscopy measurements. CeNi4Si is paramagnetic down to 2 K and follows the Curie–Weiss law with μeff = 0.52μB/f.u. and the paramagnetic Curie temperature θP = −2 K. This effective paramagnetic moment is lower than the free Ce3+ value. The obtained values for the f occupancy nf and for the coupling Δ of the f level with the conduction states are in good agreement with the values found for mixed valence compounds. Below the Fermi energy the total density of states contains mainly the d states of Ni atoms. The narrow peaks of the f states of Ce atoms were found above the Fermi level. CeNi4Si is characterized by γ = 16 mJ mol−1 K−2 and θD = 335 K.  相似文献   

9.
The relationship between the electronic and molecular structure has been established based on the complete energy matrices for a 3d5 configuration ion in a tetragonal ligand-field. By diagonalizing the complete energy matrices, the zero-field splitting parameters and the local lattice structure of the tetragonal FeF5O cluster in KMgF3:Fe3+ crystal have been studied. The distortion of local lattice distortion structure parameters ΔR1 = 0.10464 Å and ΔR2 = 0.10094 Å are determined. Simultaneously, the local lattice structure parameters R1 = 1.88936 Å and R2 = 1.89306 Å, which reflect the interactions between impurity and crystal lattice, are determined from our calculation.  相似文献   

10.
The nature of the magnetic ordering of Tb4Sb3 compound (Th3P4-type, cubic; cI28, space group , No. 220, a = 0.91518(7) nm) has been investigated by using the techniques of magnetization and neutron diffraction. AC and DC magnetisation measurements indicate antiferromagnetic ordering at 108 K in zero magnetic field that is accompanied by a field-induced metamagnetic transition to a ferromagnetic state, in fields above 0.3 T. Neutron diffraction experiment in zero applied magnetic field shows that below TN = 112(4) K Tb4Sb3 exhibits an antiferromagnetic flat spiral-type ordering with propagation vector K1 = [±1/8, ±1/8, ±1/8]. The magnetic moment of Tb atoms is found to be MTb = 6.7(3) μB at 80 K. The magnetic moment of Tb atoms lie in the (1 1 1) plane of Tb4Sb3 unit cell (the cone axis arranges along [1 1 1] direction with cone angle β = 90°). Below TN2  50 K, Tb4Sb3 shows second antiferromagnetic transition with K2 = [1/2, 1/2, 1/2] with possible re-orientation of Tb magnetic moments.  相似文献   

11.
A new mixed-valence iron phosphate Na1.25Mg1.10Fe1.90(PO4)3 has been synthesized as single crystals by a flux technique and its structure has been refined from X-ray data to a residual R1 = 0.032. The compound crystallizes in the monoclinic space group C2/c with the parameters: a = 11.7831(3) Å, b = 12.4740(3) Å, c = 6.3761(2) Å, β = 113.643(2)° and Z = 4. The structure belongs to the alluaudite structural type, and thus it obeys to the X(2)X(1)M(1)M(2)2(PO4)3 general formula. The X(2) and X(1) sites are occupied by sodium while the M(1) and M(2) sites feature a statistical distribution of iron and magnesium.

Additional information about the cation distribution has been extracted from a Mössbauer spectroscopy study which confirmed the mixed valency of the compound. A magnetic susceptibility study has also been undertaken and has shown the compound to be antiferromagnetic with a Neel temperature of about 35 K.  相似文献   


12.
Single crystals of the quaternary thiospinel Ag1.41(1)Cr1.47(5)Sn2.52(5)S8 have been obtained by heating stoichiometric mixtures of elemental metals and sulfur at 750 °C. Structural analysis by single crystal X-ray diffraction shows that the above phase crystallizes in the space group with a = 10.4142(3) Å (R1 = 0.0156 and wR2 = 0.0416). The Ag-deficiency has been confirmed by solving the structures of crystals prepared in different batches and was observed to vary slightly between crystals. Magnetic studies on a monophasic powder sample with a nominal composition of Ag1.63CrSn3S8 indicates anti-ferromagnetic ordering at low temperature. The high temperature susceptibility leads to a magnetic moment of 3.45 B.M. suggesting that chromium exists predominantly in a trivalent state.  相似文献   

13.
The structural and magnetic properties of perovskite oxides La0.7Ca0.3−xKxMnO3 (0 ≤ x ≤ 0.15) have been investigated to explore the influence of the A-site cation size-disorder (σ2). The materials were prepared by the solid-state method and then characterized by X-ray diffraction (XRD). The XRD data have been analyzed by Rietveld refinement technique. For K doping concentration x ≤ 0.075, the samples crystallize in the orthorhombic structure, while for x ≥ 0.1, the structure becomes rhombohedral. The variation of the magnetization M as a function of the applied magnetic field μ0H reveals the presence of a structural distortion leading to a reduction of the magnetization at low μ0H values. When increasing μ0H, the structural distortion decreases and for a high applied magnetic field, the M (μ0H) curves saturate indicating the disappearance of the structural distortion. The influence of K doping concentration and the applied magnetic field on the magnetocaloric properties has been considered. A large magnetic-entropy change (|ΔSM|  5 J/kg K) is obtained in all samples at Curie temperatures between 270 and 280 K for an applied magnetic field of 3 T. These results show that these materials can be used as candidates for magnetic refrigerants near room temperature.  相似文献   

14.
Investigations were made by neutron diffraction on Zr6CoAs2-type (space group no. 189) Ho6−xErxMnBi2 solid solutions. The ferromagnetic ordering temperature decreases from Ho6MnBi2 (TC = 200(6) K) to Er6MnBi2 (TC = 100(4) K), whereas temperatures of ferrimagnetic (or antiferrimagnetic) ordering (TFerri and TAFerri) are found to have non-monotonic dependences on the content of Er: TFerri = 58(4) K for Ho6MnBi2, TFerri = 162(4) K for Ho4.5Er1.5MnBi2, TFerri = 150(4) K for Ho3Er3MnBi2, TAFerri = 78(4) K for Ho1.5Er4.5MnBi2 and TAFerri = 52(4) K for Er6MnBi2.

In these compounds, no local moment was detected on the manganese ion site, except for Ho1.5Er4.5MnBi2 and Er6MnBi2 compounds. The manganese magnetic moments (μMn) is 1.5μB and these are antiferromagnetically coupled with that of rare earth moments.  相似文献   


15.
Bulk metallic glasses (BMGs) Fe61Co6Zr8−xHfxMo7B15Al1Y2 (x = 0–8) have been produced by copper mold casting technique using industrial raw materials. The effect of substitution of Hf for Zr on the glass forming ability (GFA) and the magnetic property has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and superconducting quantum interference device (SQUID). It was found that the substitution of an appropriate amount of Hf for Zr can improve the GFA of the base alloy Fe61Co6Zr8Mo7B15Al1Y2, as demonstrated by the increase in reduced glass transition temperature Trg (=Tg/Tl) and GFA parameters of γ (=Tx/Tg + Tl) and δ (=Tx/Tl − Tg). The Fe61Co6Zr5Hf3Mo7B15Al1Y2 alloy exhibits the highest GFA with the largest Trg (0.612) and δ (1.633), and can cast a fully amorphous rod in 3 mm diameter. The substitution of Hf for Zr also enhances the magnetic properties, as verified by the increase in saturation magnetization (Ms) in the alloy of Fe61Co6Zr3Hf5Mo7B15Al1Y2, whose Ms is approximately 1.5 times higher than that of the base alloy (x = 0) at room temperature. Finally, the effect of the substitution of Hf for Zr on glass forming ability and magnetic properties is discussed.  相似文献   

16.
Magnetic properties and magnetocaloric effects of Pr6Co1.67Si3 compound have been investigated by magnetization measurements. The saturation moment at 5 K is found to be 10.7μB. The compound undergoes two magnetic transitions below Curie temperature TC = 48 K and shows a reversible second-order magnetic transition around TC. A magnetic entropy change ΔS = 6.9 J/(kg K) is observed for a magnetic field change from 0 to 5 T. The full width at half maximum of the ΔS peak is found to be about 38 K.  相似文献   

17.
The minor precipitations caused by B and Zr which are the normal constituents of U720 Li alloy have been studied by analyzing the solidification process and the composition evolution. The present study aims to supply the elementary information about the existing form of B and Zr in the as-cast microstructure, which is helpful for the subsequent processing, such as homogenization treatment. The M_3B_2 and Ni_5Zr phases were observed in the U720 Li alloy in as-cast state, which were usually accompanying with each other together with g-Ni_3 Ti phase at the edge of eutectic(γ+γ'). Combining the DTA analysis and heating and quenching tests, the solidification sequence was determined to be the following: c matrix, eutectic(γ+γ'), g-Ni_3Ti, M_3B_2 and Ni_5Zr. The in situ composition analysis by EDS and EPMA revealed that the precipitation and microstructure were governed by the composition evolution in the liquids. The solidification of c matrix increased the Ti concentration in the residual liquids and resulted in the eutectic(γ+γ') formation; the(γ+γ') formation increased the Ti/Al radio in the liquids and the g-Ni_3Ti was formed in front of the eutectic(γ+γ'); the g-Ni_3Ti precipitation consumed up Al and Ti and increased the concentration of B, Mo and Cr, and M_3B_2 boride is formed;the previous precipitation of the phases consumed up most of the elements other than Ni and Zr, and Ni_5Zr is formed finally. The melting points are in the ranges of 1130–1140 °C for Ni_5Zr phase, 1180–1190 °C for M_3B_2 boride and1190–1200 °C for g-Ni_3Ti phase.  相似文献   

18.
Tube inversion by the axial drawing is an advanced forming process for manufacturing double-walled tubes with high quality, high efficiency, and low consumption. However, to realize forming process depends on producing the tearing in deforming zone, which has a close relationship with forming load. So in this paper, the influence of forming condition parameters on the deforming force and the process is investigated by rigid-plastic FEM numerical simulation. The results show that: (1) during the whole forming process, the shape of the tube remains unchanged when the radius of the core die is larger than a certain value, so a precision forming can be easily realized; (2) for a given r/d0 or t0/d0, the deforming force depends mainly on the value of r/t0, and there is a critical parameter k, when r/t0 < k, the steady forming force decreases with an increase of r/t0; on the contrary, when r/t0 > k, the steady forming force increases with an increase of r/t0; (3) the material hardening exponent n of the tube and the friction coefficient μ have a remarkable influence on the deforming force. The smaller the value of n and the larger the value of μ the larger the forming force.  相似文献   

19.
20.
Mechanical properties of a defect-free bulk GaN single crystal has been studied by nanoindentation in the C (0001) surface. Our experiments provide consistent evaluations of Young's modulus (E = 320 GPa) measured with both Berkovich and spherical indenters. Additionally, Berkovich hardness (H = 17 GPa) and true hardness (Ht = 25 GPa) were determined. Pop-in events are confirmed to indicate the elastic–plastic transition of the material, and give also consistent yield (maximum) shear stress, τmax = 19 GPa, for both the indenters. To achieve these precise analyses, the effective curvature of the indenter was determined by the Hertz analysis of the contact between the indenter and a diamond crystal, in addition to the Oliver–Pharr method with a standard fused quartz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号