共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
边缘算子在视频对象提取中的应用 总被引:4,自引:1,他引:4
提出了一种基于边缘检测算子的视频对象提取算法,用于在视频会议、新闻等视频序列的关键帧编码中提取视频对象的区域,为随后的运动估计和检测提供参考对象.首先分析了两种常用的边缘检测算子:Marr算子和Canny算子,并分别对视频关键帧进行边缘检测;然后从边缘图像中扫描出对象区域,生成掩码图像;最后与原始图像进行与操作得到对象.实验表明:采用Canny算子能够提高关键帧中视频对象提取的正确性,为整个视频序列中的对象提取提供了较优的参考帧。 相似文献
3.
产品表面图像中的缺陷自动检测方法研究 总被引:4,自引:0,他引:4
仔细设计产品表面缺陷检测的图像识别算法是基于图像处理的产品表面缺陷自动检测系统快速并正确地检测缺陷的关键。以E型磁环表面缺陷的自动检测为例,分析了产品表面图像的特征,用梯度直方图自适应阈值分割的方法对图像进行增强和分割;并提出了一种新的快速识别算法对分割后的目标图像进行检测,实验结果表明了该算法的有效性和实用性。 相似文献
4.
视频对象自动分类是智能视频监控的重要技术基础之一.为了提高分类精度,必须选择合适的对象特征.目前常用的视频对象分类方法都缺乏对于分类特征重要性的评价机制.提出一种视频对象分类特征评价与选择方法,该方法基于Adaboost算法的思想,通过对特征贡献进行定量评价实现特征选择.实验将视频对象区分为"单个行人"、"人群"、"车辆"和"骑车的人"四种类别,证明了该方法的合理性和有效性. 相似文献
5.
基于感知颜色空间的自然图像抠图 总被引:4,自引:0,他引:4
提出了一种基于感知颜色空间的快速自然图像抠图算法.该算法首先手工把图像进行区域划分;接着采用一个简单实用的模型估计前景和背景颜色;最后提出了新的基于感知颜色空间的透明度估计算法,把透明度的计算细分为亮度和色度透明度的计算.与已有的算法相比,在具有同等效果的情况下,该算法能够大大提高抠图速度。 相似文献
6.
显著对象检测是视觉注意机制的一个重要应用基础研究,对于图像检索、场景分析、图像标注与对象识别都有着重要的研究意义。基于Tresiman特征整合理论和Koch计算框架,提出一种自然场景中视觉显著对象的检测方法。该方法首先建立适用于彩色自然场景的视觉显著度模型,计算多种不同特征的显著度,然后在融合不同特征的综合显著度图中提取显著对象。实验结果表明,与经典的Itti模型相比,这种方法不仅检测快速而且更准确地将视觉显著对象从背景中分离出来,更符合人眼的真实视觉注意过程。 相似文献
7.
提出了一种基于图论的自然图像抠图方法。该算法首先在图像上建立图的模型,并用不同颜色标记目标种子点和背景种子点;接着采用有重启概率的随机游走方法计算像素点之间的相似性,进而提出一个线性概率模型;最后求解模型并分别估计前景和背景物体。与目前的抠图方法相比,该算法具有以下特点:将RWR方法结合图论用于自然图像抠图中;减小了RWR算法在图像分割中迭代求逆的高复杂度,大大提高了抠图速度;解决了“弱”边界的问题。 相似文献
8.
自然抠图从背景复杂的彩色图像中根据已知像素进行未知像素的透明度估计以实现前景的准确提取,是图像处理和影视制作的关键技术之一。由于自然图像透明度值的求解具有高度不确定性,目前对颜色和结构复杂的图像抠图效果并不理想。提出一种改进的鲁棒抠图算法。该方法根据trimap的已知前景和背景区域减少未知像素个数;计算前景-背景对的可靠性,选择可信赖的样本对获得透明度的初始值和信心值;优化基于图拉普拉斯的二次目标函数并确定未知像素最终透明度值。自然抠图实验结果表明,与几种主要抠图算法相比,所提方法能提取到具有更好视觉效果和均方误差的前景。 相似文献
9.
10.
11.
12.
为提高SSD算法检测目标的能力,提出了一种对多尺度特征图进行分类再提取的目标检测算法.该算法将SSD特征金字塔中多个不同尺度的特征图分为低层和高层两类特征图.针对低层特征图所处位置网络深度不够导致的特征表示能力不足,设计了SFE(Shallow Feature Enhancement)模块提取特征从而增加网络深度,最终... 相似文献
13.
研究了目标检测方法。针对传统背景更新方法易受噪声干扰、算法执行速度慢等弊端,对背景差分法予以改进,提出一种基于自适应图像分块和结构相似性(SSIM)的运动目标检测方法。根据视频最初几帧得到初始背景模型,再对视频后续的每帧进行自适应分块处理,利用相邻帧对应分块的结构相似性计算局部更新率,建立背景模型,将背景与当前帧差分即得到运动目标。实验结果表明,与传统的背景差分法相比,改进后的方法具有更好的检测效果。 相似文献
14.
目标检测算法性能优劣既依赖于数据集样本分布,又依赖于特征提取网络设计.从这2点出发,首先通过分析COCO 2017数据集各尺度目标属性分布,探索了数据集固有的导致小目标检测准确率偏低的潜在因素,据此提出CP模块,该模块以离线方式调整数据集小目标分布,一方面对包含小目标图片进行上采样,另一方面对图片内小目标进行复制粘贴.... 相似文献
15.
16.
针对传统二维直方图方法的难点,提出了采用基于分水岭变换的图像自适应分块的解决方法,新方法能使得每个小目标都被分割在同一个图像区域内,克服了传统图像分块方法采用固定分块,易造成将同一目标分到多个区域的缺点。方法中首先采用了基于标记点的灰度图像重建方法对图像进行预处理,在自适应增强目标的同时也克服了分水岭变换易造成过度分割的影响,在此基础上进一步地对图像采取了基于分水岭变换的图像分块,接着在每一个分块区域中采用引入目标分布信息阈值选取方法,得到二值化的结果。实验表明该方法目标分割结果稳定,适合于小目标的分割提取。 相似文献
17.
近年来,以深度学习为基础的图像目标检测技术取得了显著成就,并涌现了许多成熟的检测模型,但这些模型均需要利用大量的标注样本进行训练,而在实际场景当中,往往很难获取到相应规模的高质量标注样本,从而限制了其在特定领域的应用和推广.由于对样本数量的依赖性小,小样本条件下的图像目标检测技术逐渐得到研究和发展.基于小样本图像目标检... 相似文献
18.
19.
20.
针对基于无监督特征提取的目标检测方法效率不高的问题,提出一种在无标记数据集中准确检测前景目标的方法.其基本出发点是:正确的特征聚类结果可以指导目标特征提取,同时准确提取的目标特征可以提高特征聚类的精度.该方法首先对无标记样本图像进行局部特征提取,然后根据最小化特征距离进行无监督特征聚类.将同一个聚类内的图像两两匹配,将特征匹配的重现程度作为特征权重,最后根据更新后的特征权重指导下一次迭代的特征聚类.多次迭代后同时得到聚类结果和前景目标.实验结果表明,该方法有效地提高Caltech 256数据集和Google车辆图像的检测精度.此外,针对目前绝大部分无监督目标检测方法不具备增量学习能力这一缺点,提出了增量学习方法实现,实验结果表明,增量学习方法有效地提高了计算速度. 相似文献