首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Z. Tao  G. Hou  N. Xu  X. Chen  Q. Zhang 《Fuel Cells》2014,14(1):135-138
BaCe0.8Pr0.2O3 (BCP20) and BaCe0.6Pr0.4O3 (BCP40) powders are successfully synthesized through the Pechini method and used as the cathode materials for proton‐conducting solid state oxide fuel cells (SOFCs). The prepared cells consisting of the structure of a BaZr0.1Ce0.7Y0.2O3–δ (BZCY7)‐NiO anode substrate, a BZCY7 anode functional layer, a BZCY7 electrolyte membrane, and a cathode layer, are measured from 600 to 700 °C with humidified hydrogen (∼3% H2O) as the fuel and static air as the oxidant. The electricity results show that the cell with BCP40 cathode has a higher power density, which could obtain an open‐circuit potential of 0.99 V and a maximum power density of 378 mW cm–2 at 700 °C. The polarization resistance measured at the open‐circuit condition of BCP40 is only 0.16 Ω cm2 at 700 °C, which was less than BCP20.  相似文献   

2.
The effect of endothermic internal steam reformation of methane and exothermic fuel cell reaction on the temperature of a planar‐type anode‐supported solid oxide fuel cell was experimentally investigated as a function of current density and fuel utilization. We fabricated a large‐area (22 × 33 cm2) cell and compared temperature profiles along the cell using 30 thermocouples inserted through the cathode end plate at 750 °C under various conditions (Uf ∼50% at 0.4 A cm−2; Uf ∼70% at 0.4 A cm−2; Uf ∼50% at 0.2 A cm−2) with hydrogen fuel and methane‐steam internal reforming. The endothermic effect due to internal reforming mainly occurs at the gas inlet region, so this process is not very effective to cool down the hot spot created by the exothermic fuel cell reaction. This eventually results in a larger temperature difference on the cell. The most moderate condition with regards to thermal gradient on the cell corresponds to high fuel utilization (Uf ∼70%) and low current density (∼0.2 A cm−2). The electrochemical performance was also measured, and it was found that the current–voltage characteristics are comparable for the cell operated under hydrogen fuel and internal steam reforming of methane because of lower polarization resistance with high partial pressure of water vapor.  相似文献   

3.
The performance characteristics of fuel cells based on proton conducting BaCeO3 solid electrolyte doubly doped with gadolinium and praseodymium are reported. The amount of praseodymium doping is systematically varied in order to optimize the fuel cell performance. Fuel cells incorporating the optimum amount of praseodymium exhibit power density levels enhanced by a factor of three, compared to those incorporating undoped BaCeO3. The performance of the fuel cell is essentially the same irrespective of the fuel used. However, the performance of the fuel cell is slightly better in hydrogen than in ammonia. Nevertheless, fuel cells operated in ammonia show a greater decrease in peak power density with decreasing temperature than those operated in hydrogen. This behaviour suggests that alternative anode materials need to be utilized at lower operating temperatures.  相似文献   

4.
Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed‐bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd‐CGO). Three main types of experiments were performed to study catalytic activity and effect of sulfur poisoning: (i) CH4 and CO2 dissociation; (ii) biogas (60% CH4 and 40% CO2) temperature‐programmed reactions (TPRxn); and (iii) steady‐state biogas reforming reactions followed by postmortem catalyst characterization by temperature‐programmed oxidation and time‐of‐flight secondary ion mass spectrometry. Results showed that Ni/ScYSZ/Pd‐CGO was more active for catalytic dissociation of CH4 at 750 °C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750 °C. The presence of Pd‐CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190 °C) for CH4 conversion during temperature‐programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd‐CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming. Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming.  相似文献   

5.
Y. Tian  Z. Lü  B. Wei  X. Zhu  W. Li  Z. Wang  W. Pan  W. Su 《Fuel Cells》2012,12(4):523-529
A non‐sealed solid oxide fuel cell stack with cells embedded in plane configuration was fabricated and operated successfully in a box‐like stainless‐steel chamber. For a two‐cell stack, it demonstrated an open circuit voltage (OCV) of 2.13 V and a maximum power output of 569 mW at the flow rate of 67 sccm CH4 and 33 sccm O2. A fuel utilization of 4.16% was obtained. The cell performance was dominated by two different mechanisms, the polarization of the cathode at low current and the concentration polarization of the anode at high current. Finally, a scaled‐up stack with six cells in series generated an OCV of 6.4 V and a maximum power output of 8.18 W.  相似文献   

6.
A new phenomenological one‐dimensional model is formulated to simulate the typical degradation patterns observed in solid oxide fuel cell (SOFC) anodes due to coal syngas contaminants such as arsenic (As) and phosphorous (P). The model includes gas phase diffusion and surface diffusion within the anode and the adsorption reactions on the surface of the Ni‐YSZ‐based anode. Model parameters such as reaction rate constants for the adsorption reactions are obtained through indirect calibration to match the degradation rates reported in the literature for arsine (AsH3), phosphine (PH3), hydrogen sulfide (H2S), and hydrogen selenide (H2Se) under accelerated testing conditions. Results from the model demonstrate that the deposition of the impurity on the Ni catalyst starts near the fuel channel/anode interface and slowly moves toward the active anode/electrolyte interface as observed in the experiments. Parametric studies performed at different impurity concentrations and operating temperatures show that the coverage rate increases with increasing temperature and impurity concentration, as expected. The calibrated model was then used for prediction of the performance curves at different impurity concentrations and operating temperatures. Good agreement is obtained between the predicted results and the experimental data reported in the literature.  相似文献   

7.
We investigated an appropriate preparation condition for anode‐supported SOFCs: (La,Sr)MnO3/cathode functional layer/YSZ/Ni‐YSZ were fabricated with and without a Ni‐YSZ anode functional layer (AFL) via the tape‐casting method, where the AFL thicknesses were controlled from approximately 20 to 80 μm. The warpage depended on the co‐sintering temperature of the electrolyte/AFL/anode‐support half‐cells, indicating that similar shrinkage of the electrolyte/AFL/anode support is significant for lower warpages. The electrical properties of SOFCs with AFLs were compared to those of SOFCs without AFLs. In this regard, the use of an AFL decreased the ohmic and activation polarization resistances due to both the decrease in contact resistance between the electrolyte and the AFL and the increase in three‐phase boundaries. However, the polarization diffusion increased when an AFL was employed, because AFL layers are denser than the anode support. The maximum power densities of samples with AFL were higher than those of SOFCs without AFLs, indicating that the decrease in both ohmic and activation‐polarization resistances is more significant for improving the power densities, as compared to the concentration polarization resistance.  相似文献   

8.
A gas‐tight yttria‐stabilized zirconia (YSZ) electrolyte film was fabricated on porous NiO–YSZ anode substrates by a binder‐assisted slurry casting technique. The scanning electron microscope (SEM) results showed that the YSZ film was relatively dense with a thickness of 10 μm. La0.8Sr0.2MnO3 (LSM)–YSZ was applied to cathode using a screen‐print technique and the single fuel cells were tested in a temperature range from 600 to 800 °C. An open circuit voltage (OCV) of over 1.0 V was observed. The maximum power densities at 600, 700, and 800 °C were 0.13, 0.44, and 1.1 W cm–2, respectively.  相似文献   

9.
Apatite ceramics, known for their good electrical conductivities, have garnered substantial attention as an alternative electrolyte for solid oxide fuel cells (SOFCs). However, studies focusing on the electrochemical performances of SOFCs with apatities as electrolytes remain rare, partly due to their high sintering temperature. In this study, the effects of Mg2+, Al3+, Ga3+, and Sn4+ dopants on the characteristics of La9.5Ge6O26 ± δ are examined and their potential for use as SOFC electrolytes evaluated. The results indicate that La9.5Ge5.5Al0.5O26 is stabilized into a hexagonal structure, while the La9.5Ge5.5Sn0.5O26.25, La9.5Ge5.5Ga0.5O26, and La9.5Ge5.5Mg0.5O25.75 ceramics reveal triclinic cells accompanied with the second phase La2Sn2O7 or La2GeO5. The study further demonstrates that a high sintering temperature is needed for both the La9.5Ge5.5Mg0.5O25.75 and the La9.5Ge5.5Sn0.5O26.25 ceramics, and the worst electrical conductivity among the examined systems appears in the La9.5Ge5.5Ga0.5O26 ceramic. The La9.5Ge5.5Al0.5O26 ceramic is accordingly selected for cell evaluation due to its ability to reach densification at 1,350 °C, its good electrical conductivity of 0.026 S cm–1 at 800 °C, and its acceptable thermal expansion coefficient of 10.1 × 10–6 K–1. The maximum power densities of the NiO‐SDC/La9.5Ge5.5Al0.5O26/LSCF‐SDC single cell are found to be respectively 0.22, 0.16, 0.11, and 0.07 W cm–2 at 950, 900, 850, and 800 °C.  相似文献   

10.
Two types of micro‐tubular hollow fiber SOFCs (MT‐HF‐SOFCs) were prepared using phase inversion and sintering; electrolyte‐supported, based on highly asymmetric Ce0.9Gd0.1O1.95(CGO) HFs and anode‐supported based on co‐extruded NiO‐CGO(CGO)/CGO HFs. Electroless plating was used to deposit Ni onto the inner surfaces of the electrolyte‐supported MT‐HF‐SOFCs to form Ni‐CGO anodes. LSCF‐CGO cathodes were deposited on the outer surface of both these MT‐HF‐SOFCs before their electrochemical performances were compared at similar operating conditions. The performance of the anode‐supported MT‐HF‐SOFCs which delivered ca. 480 mW cm–2 at 600 °C was superior to the electrolyte‐supported MT‐HF‐SOFCs which delivered ca. six times lower power. The contribution of ohmic and electrode polarization losses of both FCs was investigated using electrochemical impedance spectroscopy. The electrolyte‐supported MT‐HF‐SOFCs had significantly higher ohmic and electrode polarization ASR values; this has been attributed to the thicker electrolyte and the difficulties associated with forming quality anodes inside the small (<1 mm) lumen of the electrolyte tubes. Further development on co‐extruded anode‐supported MT‐HF‐SOFCs led to the fabrication of a thinner electrolyte layer and improved electrode microstructures which delivered a world leading 2,400 mW cm–2. The newly made cell was investigated at different H2 flow rates and the effect of fuel utilization on current densities was analyzed.  相似文献   

11.
Novel high permeable porous Ni‐Mo substrates with different area densities of straight gas flow channels are successfully developed to improve the hydrogen fuel gas and the water byproduct diffusion in the anode and supporting substrate. Metal‐supported cell A, cell B and cell C with 5 × 5 cm2 supporting substrates are fabricated by atmospheric plasma spraying processes, these cells have the material structure of Ni‐Mo/LSCM (La0.75Sr0.25Cr0.5‐Mn0.5O3–δ)/NiO‐LDC(Ce0.55La0.45O2–δ)/SDC(Sm0.15Ce0.85O3–δ)/LSGM (La0.8Sr0.2Ga0.8Mg0.2O3–δ)/SSC(Sm0.5Sr0.5CoO3–δ). Cell A is supported by a conventional porous Ni‐Mo substrate without straight gas flow channels, cell B and cell C are supported respectively by the novel high permeable porous Ni‐Mo substrates with 1.5 and 2.73 channels per square centimeter. The power densities at 0.8 V and 750 °C are 550, 998 and 1,161 mW cm−2 for cell A, cell B and cell C respectively. The 100 h durability test at the constant current density of 400 mA cm−2 and 650 °C shows cell B and cell C have smaller degradation rates than cell A. The results obtained from AC impedance and circuit model analyses indicate that the electrolyte ohm and the cathode polarization resistances are significantly reduced by introducing straight gas flow channels into the supporting substrate.  相似文献   

12.
Y. Bai  C. Wang  C. Jin  J. Liu 《Fuel Cells》2011,11(3):465-468
Anode current collection points (ACCPs) were fabricated on the outside surface of a tubular anode‐supported solid oxide fuel cell (SOFC). The ACCPs were distributed axially along the SOFC tube with the distance between every adjacent two ACCPs the same. The effect of collecting current with different number of ACCPs on the performance of the SOFC was studied. It was found that with the same effective area, using more ACCPs to collect the current leads to better performance, while with a SOFC with a determined total surface area, there is an optimum number of ACCPs to be made and used considering the area occupied by the ACCPs themselves.  相似文献   

13.
The effect of Mn alloying on PdO powder and Pd‐impregnated Pd + YSZ cathode for the O2 reduction reaction in intermediate temperature solid oxide fuel cells has been studied in detail. The microstructure, thermal stability, electrochemical activity and performance stability of the powder and cathode were analysed using thermal gravimetric analysis, X‐ray diffraction, scanning electron microscopy/energy dispersive spectroscopy and electrochemical impedance spectroscopy. The results indicate that an addition of 5 mol.‐% Mn effectively inhibits the growth and coalescence of Pd and PdO particles at high temperatures and stabilises the microstructure of the powders and the electrode; as a consequence, the electrochemical performance and stability of the cathode are significantly improved. The electrochemical performance of the Pd + YSZ and Pd0.95Mn0.05 + YSZ cathodes so prepared is much better than that of the conventional LSM‐based cathodes and is also comparable with the mixed ionic and electronic conducting oxide cathodes such as LSCF.  相似文献   

14.
The degradation mechanism of anode‐supported planar solid oxide fuel cells is investigated in the present work. We fabricate a large‐area (10 cm × 10 cm) cell and carry out a long‐term test with the assembly components. A constant current of ∼0.4 A cm–2 is applied to the cell for ∼3,100 h, and the furnace temperature is controlled in the sequence 750–800–750 °C to investigate the effect of operating temperature and thermal cycling on the degradation rate. Impedance spectra and current–voltage characteristics are measured during the operation in order to trace any increase in Ohmic and non‐Ohmic resistance as a function of time. The degradation rate is rapid during the operation at the higher temperature of ∼800 °C compared to that during the operation at ∼750 °C. Even after cooling down to ∼750 °C, that rate is still accelerated. The main contribution to the cell degradation is from an increase in the Ohmic resistance. Postmaterial analyses indicate that the cathode is delaminated at the electrolyte/cathode interface, which is attributed to the difference in thermal expansion coefficient (TEC). Thus, the present results emphasize the importance of matching the TEC between cell layers, especially under severe operating conditions such as long duration and complex thermal cycling.  相似文献   

15.
A series of glasses and glass–ceramics (GCs) aiming at applications as sealants for solid oxide fuel cells (SOFCs) were synthesized by partial substitution of Ca for Sr in the diopside‐Ba disilicate composition. X‐ray diffraction in conjunction with the Rietveld‐RIR technique were employed to quantify the crystalline (diopside and Sr‐diopside) and amorphous phases in the glasses sintered/heat treated at 850 °C in humidified 10%H2–90%N2 gas mixture for 250 h. Weibull modulus varied in the range 11.6–34.4 implying toward good mechanical reliability of synthesized GCs. Thermal shock resistance of model electrochemical cells made of yttria‐stabilized zirconia, gadolinia‐doped ceria, and lanthanum gallate based solid electrolytes, hermetically sealed by one diopside‐based composition, was evaluated employing quenching from 800 °C in air and water. Suitable thermal expansion coefficient, mechanical reliability, and strong adhesion to stabilized zirconia and metallic interconnects, are all suggesting a good suitability of the sealants for SOFC applications.  相似文献   

16.
B. H. Choi  I. W. Jang  H. J. Sung 《Fuel Cells》2013,13(6):1088-1100
The functional layer of a flat‐tubular solid oxide fuel cell (SOFC) is examined using a three‐dimensional microscale electrode model. SOFC electrodes essentially include two types of layers: a structural layer and a functional layer. The structural layers, which are the anode support layer and the cathode current collector layer, are composed of large particles with a high porosity that facilitates gas diffusion. The functional layers consist of small particles with a low porosity that increases the triple phase boundary (TPB) reaction area and reduces the activation overpotential. In the model, the particle diameter and functional layer thickness are adjusted and analyzed. The effects of the two parameters on the performance of the functional layer are monitored in the contexts of several multilateral approaches. Most reactions occurred near the electrode–electrolyte interface; however, an electrode design that included additional TPB areas improved the electrode performance. The role of the functional layer in a flat‐tubular SOFC is examined as a function of the functional layer particle size and thickness. The performance of a cell could be enhanced by preparing a functional layer using particles of optimal size and thickness, and by operating the device under conditions optimized for these parameters.  相似文献   

17.
A long‐term stability study of an anode‐supported NiO/YSZ‐YSZ‐LSM/YSZ microtubular cell was performed, under low fuel utilization conditions, using pure humidified hydrogen as fuel at the anode side and air at the cathode side. A first galvanometric test was performed at 766 °C and 200 mA cm–2, measuring a power output at 0.5 V of ∼250 mW cm–2. During the test, some electrical contact breakdowns at the anode current collector caused sudden current shutdowns and start‐up events. In spite of this, the cell performance remains unchanged. After a period of 325 h, the cell temperature and the current density was raised to 873°C and 500 mA cm–2, and the cell power output at 0.5 V was ∼600 mW cm–2. Several partial reoxidation events due to disturbance in fuel supply occurred, but no apparent degradation was observed. On the contrary, a small increase in the cell output power of about 4%/1,000 h after 654 h under current load was obtained. The excellent cell aging behavior is discussed in connection to cell configuration. Finally, the experiment concluded when the cell suffered irreversible damage due to an accidental interruption of fuel supply, causing a full reoxidation of the anode support and cracking of the thin YSZ electrolyte.  相似文献   

18.
The effects of anode support fabrication parameters on the cell performance and the redox behavior of the cell are investigated experimentally and theoretically. In the experimental program, an yttria stabilized zirconia based anode supported membrane electrode group (MEG) is developed via the tape casting, co‐sintering and screen printing methodologies. For comparison, various anode supported cells with different electrolyte thickness and anode support porosities are also fabricated. In the theoretical study, a mathematical model is developed to represent the fluid flow, the heat transfer, the species transport and the electrochemical reaction in solid oxide fuel cells. In addition, a redox model representing the mechanical damage in the electrochemical reaction zones due to redox cycling is developed by defining a damage function as a function of strain and a damage coefficient. The effects of anode support porosity and the electrolyte thickness on the cell performance and redox stability of the cells are numerically investigated. The experimental results are compared with the numerical results to validate the mathematical model. Finally, a predictive tool, which is valid for the ranges of the cell fabrication parameters investigated, is developed to estimate the electrochemical performance after single redox cycle.  相似文献   

19.
Nickel oxide and yttria doped zirconia composite strength is crucial for anode‐supported solid oxide fuel cells, especially during transient operation, but also for the initial stacking process, where cell curvature after sintering can cause problems. This work first compares tensile and ball‐on‐ring strength measurements of as‐sintered anodes support. Secondly, the strength of anode support sintered alone is compared to the strength of a co‐sintered anode support with anode and electrolyte layers. Finally, the orientation of the specimens to the bending axis of a co‐sintered half‐cell is investigated. Even though the electrolyte is to the tensile side, it is found that the anode support fails due to the thermo‐mechanical residual stresses.  相似文献   

20.
Redox tolerance of 50 and 500 μm thick Ni/YSZ (yttria‐stabilized zirconia) anodes supported on YSZ electrolytes were studied under single‐chamber solid oxide fuel cell conditions. Open circuit voltage, electrochemical impedance spectra, and discharge curves of the cells were measured under different methane/oxygen ratios at 700 °C. For the cell with the thin anode, a significant degradation accompanying oscillatory behaviors was observed, whereas the cell based on the thick anode was much more stable under the same conditions. In situ local anode resistance (Rs) results indicated that the Ni/NiO redox cycling was responsible for the oscillatory behaviors, and the cell degradation was primarily caused by the Ni reoxidation. Reoxidation of the thick anode took place at a low methane/oxygen ratio, but the anode can be recovered to its original state by switching to a methane‐rich environment. On the contrary, the thin anode was unable to be regenerated after the oxidation. Microstructure damage of the anode was attributed to its irreversible degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号