首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper shows by thorough electrochemical investigation that (1) the performances of high-temperature polymer electrolyte fuel cell membrane electrode assemblies of three suppliers are differently affected by compressive forces. (2) Membrane thickness reduction by compressive pressure takes place less than expected. (3) A contact pressure cycling experiment is a useful tool to distinguish the impact of compression on the contact resistances bipolar plate/gas diffusion layer (GDL) and GDL/catalytic layer. A detailed visual insight into the structural effects of compressive forces on membrane and gas diffusion electrode (GDE) is obtained by micro-computed X-ray tomography (μ-CT). μ-CT imaging confirms that membrane and GDEs undergo severe mechanical stress resulting in performance differences. Irreversible GDL deformation behavior and pinhole formation by GDL fiber penetration into the membrane could be observed.  相似文献   

2.
This paper will present the characterization of two types of membrane‐electrode‐assemblies (MEAs) for high‐temperature polymer electrolyte membrane fuel cells (HT‐PEMFC) working under reformate stream. The important aspects to be considered in the characterization of these MEAs are: (i) presence of contaminants, and (ii) composition of the anode. Start/stop cycling test were performed for two different Dapozol® MEAs using different GDL materials, using first hydrogen and then synthetic reformate as a fuel gas, both with a dew point of 80 °C. With these results the influence of contaminants present in the reformate was compared for the two types of MEAs, showing the superior performance of the Dapozol® 101 MEA under these conditions. The possibility to further enhance the MEAs' resilience against the operation of reformates by changing the anode catalyst composition was evaluated in a half MEA configuration, considering that the impact of the H2S present in the fuel presents a major issue. For this reason the hydrogen oxidation reaction (HOR) was evaluated for two types of Pt‐based electrocatalysts in an anodic half MEA configuration using different hydrogen‐rich fuel mixtures. These results provide valuable information for the optimization of the MEA and the anode catalyst for HT‐PEMFC.  相似文献   

3.
H. N. Su  S. J. Liao  L. M. Xu 《Fuel Cells》2009,9(5):522-527
A novel micro planar fuel cell power supplier, in which a six‐cell PEM unitised regenerative fuel cell (URFC) stack is used as the power generator, was designed and fabricated. Six membrane electrode assemblies were prepared and integrated on one piece of membrane by spraying catalyst slurry on both sides of the membrane. Each cell was made by sandwiching a membrane electrode assembly (MEA) between two graphite monopolar plates and six cell units were mechanically fixed in two organic glass endplates. When the stack was operated in an electrolysis mode, hydrogen was generated from the splitting of water and stored using a hydrogen storage alloy; conversely, when the stack was operated in fuel cell mode, hydrogen was supplied by the hydrogen storage alloy and oxygen was supplied from air by self‐breathing of the cathode. At room temperature and standard atmospheric pressure, the open‐circuit voltage (OCV) of the system reached 4.9 V, the system could be discharged at a constant current density of 20 mA cm–2 for about 40 min, and the work voltage was ∼2.9 V. The system showed good stability for 10 charge–discharge cycles.  相似文献   

4.
Membrane electrode assemblies (MEAs) based on radiation‐grafted proton exchange membranes developed at PSI have shown encouraging performance in the past in hydrogen and methanol fuelled polymer electrolyte fuel cells. In this study, the effect of the pre‐treatment of crosslinked radiation‐grafted FEP membranes prior to lamination with the electrodes on the performance of the MEAs was investigated. Two approaches were assessed separately and in combination: (1) the impregnation of the radiation‐grafted membranes with solubilised Nafion®, and (2) the use of a swollen vs. dry membrane. It is found that the combination of coating the membrane with Nafion® ionomer and hot‐pressing the MEA with the membrane in the wet state produce the best single cell performance. In the second part of the study, the durability of an MEA, based on a radiation‐grafted FEP membrane, was investigated. The performance was stable for 4,000 h at a cell temperature of 80 °C. Then, a notable degradation of the membrane, as well as the electrode material, started to occur as a consequence of either controlled or uncontrolled start‐stop cycles of the cell. It is assumed that particular conditions, to which the cell is subjected during such an event, strongly accelerate materials degradation, which leads to the premature failure of the MEA.  相似文献   

5.
Different accelerated tests in 12 fuel cells stack were performed in laboratory, namely on/off, back‐up, and base‐load regimes. In parallel, membrane electrode assemblies (MEA) were integrated in two “on‐site” systems for GSM relay application. One of them was dedicated to base‐load power applications while the second fuel cells coupled with photovoltaic panels operated in semibase load mode. To investigate the influence of the power profiles on MEA degradation, over 80 CCB MEAs (5 layers) were studied at different scales using ex situ characterizations such as tensile tests, TGA‐MS, DMTA, and SEM. A series of complementary microstructural ageing markers were thereby identified. The isolated influence of dry‐wet cycling on MEA properties was also established after passive hydro‐thermal (HT) ageing performed continuously for 10 months in the laboratory. The changes of each marker as a function of HT ageing time permitted to define a temporal benchmark. Based on these indicators, the main changes occurred in the MEA properties appear after a 5 months dry‐humid cycling (up to about 1800 cycles). The trends observed were useful to compare and estimate the degree of degradation of each ageing tests. Thus, the accelerated tests performed in laboratory for at least 500 h in stack did not reveal systematic MEA modifications. On the contrary, the 1500 h “on‐site” system operation results in some MEA degradations which origins are discussed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
We present a simple glue method for fabricating membrane electrode assemblies (MEA) for direct methanol fuel cells (DMFC). Rather than the conventional “dry” hot-pressing method that relies solely on hot-pressing at a high pressure and temperature to form a MEA, the “wet” method developed in this work introduces a binding agent, consisting of Nafion® solution, between a polymer electrolyte membrane (PEM) and an anode/cathode. The introduced binding agent can provide a better adhesion and stronger binding force between a membrane and an electrode, thereby facilitating a better interfacial contact between the electrode and the Nafion® membrane, which has been proved by scanning electron microscopy (SEM) analyses to the cross-sectional morphology of the MEA after long-term operation. The cell performance characterization showed the MEA fabricated by the glue method was more stable in cell performance than that fabricated by the conventional hot-pressing method. Cyclic voltammetry (CV) results also demonstrated the MEA fabricated by the glue method exhibited a higher electrochemical surface area (ESA) as a result of the improved interfacial contact between the Nafion® membrane and the electrodes. Finally, the DMFC with the MEA fabricated by the glue method was characterized by the electrochemical impedance spectroscopy (EIS).  相似文献   

7.
The combination of Nafion-based electrode and hydrocarbon-based membrane is an ideal choice for researcher in making membrane electrode assemblies (MEAs) containing alternative membranes replacing Nafion for polymer electrolyte fuel cells (PEFCs) due to their intrinsic properties. This advantage, however, is limited by the incompatibility between the membrane and the electrode, which results in MEA performance decay and low durability. In this study, we propose fabrication of MEA made of sulfonated poly(aryl ether sulfone) (SPES) membrane and Nafion-based electrode using the decal process. The decal process was found to be very effective in forming good interface between SPES and the electrode, although hot pressing temperature was relatively low (140 °C). The SPES-MEA revealed comparable performance to conventional Nafion-MEA at high humidity, indicating negligible contact resistance in the SPES–electrode interface. Open circuit voltage (OCV) drop of SPES-MEA during OCV holding at 40% RH for 200 h was from 0.975 V to 0.8 V, implying slight chemical degradation of SPES leading to increased hydrogen crossover in the membrane. However, it seems that the interfacial damage between the SPES and Nafion electrode in the SPES-MEA is negligible during the OCV test. Nonetheless, further investigation is necessary to confirm the long-term stability of the SPES-MEA fabricated by the decal process under harsher conditions such as dry/wet and freeze/thaw cycling.  相似文献   

8.
During the operation of a PEMFC, the polymer membrane is degraded by electrochemical reactions and mechanical stresses. We investigated the effects of repeated electrochemical and mechanical degradations in a membrane. For mechanical degradation, the membrane and MEA were repeatedly subjected to wet/dry cycles; for electrochemical degradation, the cell was operated under open-circuit voltage (OCV)/low-humidity conditions. The repeated wet/dry cycles led to a decrease in the mechanical strength of the membrane. When the MEA was degraded electrochemically, repeated wet/dry cycling resulted in the formation of pinholes in the membrane. In the case of different MEAs that were first degraded electrochemically, the extents of their hydrogen crossover currents increased due to repeated wet/dry cycling being different. Therefore, these results indicated that the membrane durability could be evaluated by these methods of repeated electrochemical degradation and wet/dry cycles.  相似文献   

9.
High temperature PEMFCs based on phosphoric acid‐doped ABPBI membranes have been prepared and characterised. At 160 °C and ambient pressure fuel cell power densities of 300 mW cm–2 (with hydrogen and air as reactants) and 180 mW cm–2 (with simulated diesel reformate/air) have been achieved. The durability of these membrane electrode assemblies (MEAs) in the hydrogen/air mode of operation at different working conditions has been measured electrochemically and has been correlated to the cell resistivity, the phosphoric acid loss rate and the catalyst particle size. Under stationary conditions, a voltage loss of only –25 μV h–1 at a current density of 200 mA cm–2 has been deduced from a 1,000 h test. Under dynamic load changes or during start–stop cycling the degradation rate was significantly higher. Leaching of phosphoric acid from the cell was found to be very small and is not the main reason for the performance loss. Instead an important increase in the catalyst particle size was observed to occur during two long‐term experiments. At high gas flows of hydrogen and air ABPBI‐based MEAs can be operated at temperatures below 100 °C for several hours without a significant irreversible loss of cell performance and with only very little acid leaching.  相似文献   

10.
In this study, two approaches are compared to develop nanostructured membrane electrode assemblies (MEA) using layer‐by‐layer (lbl) technique. The first is based on the direct deposition of polyallylamine hydrochloride (PAH) and sulfonated polyaniline (sPAni) on Nafion support to prepare lbl composite membrane. In the second approach, sPAni is coated on the support in the presence of platinum (Pt) salt, Nafion solution and Vulcan for obtaining catalyst containing membranes (CCMs). SEM and UV–vis analysis show that the multilayers are deposited on both sides of Nafion successfully. Although H2/O2 single cell performances of acid doped lbl composite membrane based MEA are found to be at the range of 126 and 160 mW cm?2 depending on the number of deposited layers, the cell performance of MEA obtained from catalyst containing lbl self‐assembled thin membrane (PAH/sPAni‐H+)10‐Pt is found to be 360 mW cm?2 with a Pt utilization of 720 mW mgPt?1. This performance is 82% higher as compared to original Nafion®117 based MEA (198 mW cm?2). From the cell performance evaluations for different structured MEAs, it is mainly found out that the use of lbl CCMs instead of composite membranes and fabrication of thinner electrolytes result in a higher H2/O2 cell activity due to significant reduction in ohmic resistivity. Also, it is observed that the use of sPAni slightly improves the cell performance due to an increased probability of the triple phase contact and it can lead to superior physicochemical properties such as conductivity and thermal stability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40314.  相似文献   

11.
An acceleration stress test (AST) was performed to evaluate the durability of a polymer membrane in a polymer electrolyte membrane fuel cell (PEMFC) for 500 hours. Previous studies have shown that hydrogen crossover measured by linear sweep voltammetry (LSV) increases when the polymer membrane deteriorates in the AST process. On the other hand, hydrogen crossover of the membrane often decreases in the early stages of the AST test. To investigate the cause of this phenomenon, we analyzed the MEA operated for 50 hours using the AST method (OCV, RH 30% and 90 oC). Cyclic voltammetry and transmission electron showed that the electrochemical surface area (ECSA) decreased due to the growth of electrode catalyst particles and that the hydrogen crossover current density measured by LSV could be reduced. Fourier transform infrared spectroscopy and thermogravimetric/differential thermal analysis showed that -S-O-S- crosslinking occurred in the polymer after the 50 hour AST. Gas chromatography showed that the hydrogen permeability was decreased by -S-O-S- crosslinking. The reduction of the hydrogen crossover current density measured by LSV in the early stages of AST could be caused by both reduction of the electrochemical surface area of the electrode catalyst and -S-O-S- crosslinking.  相似文献   

12.
The effect of operating temperature on performance degradation of direct methanol fuel cell (DMFCs) is examined to disclose the main parameter of the degradation mechanism and the degradation pattern in the membrane electrode assemblies (MEAs). The DMFC MEA degradation phenomenon is explained through the use of various electrochemical/physicochemical tools, such as electrochemical impedance spectroscopy, electrode polarization, methanol stripping voltametry, field emission‐scanning electron microscopy, X‐ray diffraction, inductively coupled plasma‐atomic emission spectroscopy, and X‐ray photoelectron spectroscopy analysis. The operation of DMFC under high temperature accelerates the degradation process of the DMFC. The higher degradation rate under high temperature DMFC operation is mainly attributed to the formation of membrane pinhole with interfacial delamination and cathode degradation. A high operating temperature may result in more considerable thermal and mechanical stress of the polymeric membrane continuously due to frequent dry–wet cycling mode and substantial uneven distribution of water between the anode and the cathode during a long period of DMFC operation. On the other hand, the electrochemical surface area deterioration by Pt coarsening and ionomers loss is not directly related to the larger DMFC performance decay at high temperature.  相似文献   

13.
The fuel cell differential electrochemical mass spectrometry (FC‐DEMS) measurements were performed for studying the ethanol oxidation reaction (EOR), using alkaline membrane electrode assemblies (MEAs) made up of nanoparticle Pt catalyst and alkaline polymeric membranes. The obtained results indicate that in an alkaline medium, ethanol undergoes significantly more complete electro‐oxidation to CO2 than in an acidic MEA using the same Pt anode. The CO2 current efficiency (CCE) can be compared for acidic and alkaline MEA with similar electrochemical active area on the anode side. The CCE estimated, in case of alkaline MEA with Pt anode, is around 55% at 0.8 V/RHE, 60 °C and 0.1 M ethanol. In comparison, under similar conditions, acidic MEAs using the same anode catalyst show only 2% CCE. This might indicate that the C–C bond scission rates are much higher in alkaline media. However, the mechanism of ethanol oxidation in alkaline media is not exactly known. CO2 produced in electrochemical reaction forms soluble carbonates in the presence of aqueous alkaline electrolyte. This makes it difficult to study ethanol oxidation in alkaline media using FTIR or model DEMS systems. The alkaline polymer electrolyte membranes as used in this study for making alkaline MEAs provide an important opportunity to observe CO2 produced during EOR using FC‐DEMS system.  相似文献   

14.
The loss in performance during fuel cell operation is one of the critical factors that hamper fuel cells commercialization. This paper presents a research activity related to high temperature polymer electrode membrane fuel cell (HT‐PEMFC) degradation. The aim of the study is to investigate catalyst degradation of membrane electrode assemblies (MEAs) subjected to load cycles. Two HT‐PEM MEAs have been subjected to accelerated ageing tests based on load cycling. The cycles profile has been chosen in order to enhance catalyst degradation. Both the tests show a fuel cell performance loss lower than 30 mV after 100,000 cycles at 600 mA cm−2. In order to analyze the catalyst evolution, synchrotron small angle X‐ray scattering (SAXS) has been employed. The catalyst degradation of the two conditioned samples has been compared with the data obtained from a new MEA that has been used as reference sample. The SAXS results showed a mean size increase of the platinum nanoparticles up to the 100%.  相似文献   

15.
A study was conducted to understand the physical and chemical changes in fuel cell membranes that result from Freeze/Thaw (F/T) cycling which might occur in electric vehicles. Nafion™ membranes and membrane electrode assemblies (MEA) were subjected to 385 temperature cycles between +80 °C and –40 °C over a period of three months to examine the effects on key properties. These studies were done on both compressed and uncompressed materials in the un‐humidified state. Although no catastrophic failures were seen, the analytical results shed some light on the relationship of temperature cycling to membrane structure, water management, ionic conductivity, gas permeability and mechanical strength. Changes in water swelling behavior and dry densities were noted and the effect on ionic conductivity and cell performance was examined. The impact on catalyst activity and structural integrity of MEAs was evaluated electrochemically.  相似文献   

16.
Y. H. Chu  Y. G. Shul 《Fuel Cells》2012,12(1):109-115
The alcohols (methanol, ethanol, and 1‐propanol) crossover behavior of through fuel cell membrane electrode assembly (MEA) in direct alcohol fuel cell (DAFC) system was studied. We divided five different factors which affect alcohol crossover behavior through MEA to analyze alcohol crossover behavior. Those are membrane effect, physical blocking effect of anode, alcohol oxidation effect of anode electrocatalysts, physical blocking effect of cathode, and alcohol oxidation effect of cathode. Among these five factors, the four factors caused by two different electrodes (anode and cathode) were evaluated by fabricating various types of MEA. In the case of alcohols through membrane without any electrode was increased when the cell temperature was raised from room temperature to 100 °C, but it was decreased above the cell temperature of 100 °C. Among the electrode effects on alcohol crossover rate, physical blocking effect of electrodes played dominant role below 100 °C. However alcohol oxidation effects of electrodes was predominant above the 100 °C.  相似文献   

17.
The water crossover behavior in air-breathing direct methanol fuel cell (DMFC) was studied with varying structural variables of membrane electrode assembly (MEA), such as existence of microporous layer (MPL) in cathode diffusion layer, hydrophobicity of cathode backing layer, and membrane thickness. Water crossover from anode to cathode was lowered by the introduction of MPL to cathode backing layer, the reduction of hydrophobicity of cathode backing layer, and the reduction of membrane thickness. To account for the observed water crossover behavior, water back flow caused by the hydraulic pressure difference between the cathode and anode was considered. It was also found that the methanol crossover was lowered with the reduction of water crossover. The MEA designed for low water crossover revealed improved stability under continuous operation.  相似文献   

18.
The interaction of Nafion® 212 membrane with a carbocyclic fuel, decalin was studied. Membrane electrode assemblies (MEA) fabricated with decalin treated membranes exhibited significant increase in power density in a H2/Air fuel cell at 60% relative humidity. Small angle X‐ray scattering experiments were used to understand the morphological changes in the membrane due to decalin treatment.  相似文献   

19.
This review is focused on the design and synthesis of new high‐temperature polymer electrolytes based on aromatic polyethers bearing polar pyridine moieties in the main chain. Such materials are designed to be used in polymer electrolyte fuel cells operating at temperatures higher than 100 °C. New monomers and polymers have been synthesized and characterized within this field in respect of their suitability for this specific application. Copolymers with optimized structures in order to combine excellent film‐forming properties with high mechanical, thermal and oxidative stability and controlled acid uptake have been synthesized which, after doping with phosphoric acid, result in ionically conducting membranes. Such materials have been studied in respect of their conductivity under various conditions and used for the construction of membrane‐electrode assemblies (MEAs) which are used for fuel cells operating at temperatures up to 180 °C. New and improved, in terms of oxidative stability and mechanical properties in the doped state, polymeric membranes have been synthesized and used effectively for MEA construction and single‐cell testing. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Gas diffusion layers (GDLs) in the proton exchange membrane fuel cells (PEMFCs) enable the distribution of reactant gases to the reaction zone in the catalyst layers by controlling the water in the pore channels apart from providing electrical and mechanical support to the membrane electrode assembly (MEA). In the present work, we report the in situ growth of carbon nanotubes nanoforest (CNN) directly onto macro‐porous carbon paper substrates. The surface property as analysed by a Goniometer showed that the CNN/carbon paper surface is highly hydrophobic. CNN/carbon paper was employed as a GDL in an MEA using Nafion‐212 membrane as an electrolyte and evaluated in single cell PEMFCs. While the GDLs prepared by wire‐rod coating process have major performance losses at lower humidities, the in situ CNN/carbon paper, developed in this work, shows very stable performance at all humidity conditions demonstrating a significant improvement for fuel cell performance. The CNN/carbon‐based MEAs showed very stable performance with power density values of ∼1,100 and 550 mW cm–2, respectively, both using O2 and air as oxidants at ambient pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号