首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nafion® membrane blended with polyacrylonitrile nanofibers decorated with ZrO2 was successfully fabricated. The composite membrane showed improved proton conductivity, swelling ratio, thermal and mechanical stability, reduced methanol crossover, and enhanced fuel cell efficiency. The nanocomposite membranes achieved a reduced methanol crossover of 5.465 × 10−8 cm2 S−1 compared to 9.118 × 10−7 cm2 S−1 of recast Nafion® membrane using a 5 M methanol solution at 80°C. The composite membrane also showed an ion conductivity of 1.84 compared to 0.25 S cm−1 recast Nafion® at 25°C. The composite membranes showed a peak power density of 68.7 mW·cm−2 at 25°C, these results show a promising composite membrane for fuel cell application.  相似文献   

2.
The present study uses the radiation‐induced grafting method and applies it onto poly(ethylene‐alt‐tetrafluoroethylene) (ETFE) for the synthesis of proton‐exchange membranes by using monomers 4‐vinyl pyridine (4VP), 2‐vinyl pyridine (2VP), N‐vinyl‐2‐pyrrolidone (NVP) followed by phosphoric acid doping. Phosphoric acid that provides Grotthuss mechanism in proton mobilization is used to transform the graft copolymers to a high temperature membrane state. Resultant proton‐exchange membranes are verified with their proton conductivity, water uptake, mechanical and thermal properties, and phosphorous distribution as ex situ characterization. Our most important finding as a novelty in literature is that ETFE‐g‐P4VP phosphoric acid doped proton‐exchange membranes exhibit proton conductivities as 66 mS cm–1 at 130 °C, 53 mS cm–1 at 120 °C, 45 mS cm–1 at 80 °C at RH 100% and 55 mS cm–1 at 130 °C, 40 mS cm–1 at 120 °C, 35 mS cm–1 at 80 °C at dry conditions. Moreover, ETFE‐g‐P4VP membranes still conserves the mechanical properties, i.e., tensile strength up to 48 MPa. ETFE‐g‐P4VP membranes were tested in PEMFC at 80, 100, and 120 °C and RH <2% and exhibit promising performance as an alternative to commercial Nafion® membranes. The single cell testing performance of ETFE‐g‐P4VP membranes is presented for the first time in literature in our study.  相似文献   

3.
L. Wu  D. Zhou  H. Wang  Q. Pan  J. Ran  T. Xu 《Fuel Cells》2015,15(1):189-195
For improving stability without sacrificing ionic conductivity, ionically cross‐linked proton conducting membranes are fabricated from Na+‐form sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) and H+‐formed sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Ionically acid‐base cross‐linking between sulfonic acid groups in SPPO and phthalazone groups in SPPESK impart the composite membranes the good miscibility and electrochemical performance. In particular, the composite membranes possess proton conductivity of 60–110 mS cm−1 at 30 °C. By controlling the protonation degree of SPPO within 40–100 %, the composite membranes with favorable cross‐linking degree are qualified for application in fuel cells. The maximum power density of the composite membrane reaches approximately 1100 mW cm−2 at the current density of 2800 mA cm−2 at 70 °C.  相似文献   

4.
J. Li  C. Zhong  X. Meng  H. Wu  H. Nie  Z. Zhan  S. Wang 《Fuel Cells》2014,14(6):1046-1049
The high‐temperature solid oxide electrolysis cell (SOEC) is one of the most promising devices for hydrogen mass production. To make SOEC suitable from an economical point of view, each component of the SOEC has to be optimized. At this level, the optimization of the oxygen electrode is of particular interest since it contributes to a large extent to the cell polarization resistance. The present paper is focused on an alternative oxygen electrode of Zr0.84Y0.16O2–δ‐Sr2Fe1.5Mo0.5O6–δ (YSZ‐SFM). YSZ‐SFM composite oxygen electrodes were fabricated by impregnating the YSZ matrix with SFM, and the ion‐impregnated YSZ‐SFM composite oxygen electrodes showed excellent performance. For a voltage of 1.2 V, the electrolysis current was 223 mA cm−2, 327 mA cm−2 and 310 mA cm−2 at 750 °C for the YSZ‐SFM10, YSZ‐SFM20, and YSZ‐SFM30 oxygen electrode, respectively. A hydrogen production rate as high as 11.46 NL h−1 has been achieved for the SOEC with the YSZ‐SFM20 electrode at 750 °C. The results demonstrate that YSZ‐SFM fabricated by impregnating the YSZ matrix with SFM is a promising composite electrode for the SOEC.  相似文献   

5.
Composite membranes were prepared by the interfacial condensation of water-soluble diamines with an organic solvent (dichloromethane)-soluble dicarbo-methoxy terephthaloyl chloride or carbomethoxy terephthaloyl chloride on top of a porous aluminum oxide support. The morphology of skin on the composite membranes is different in the two different procedures. The polyimide composite membranes with 40-times coatings provide a high gas permeation rate of oxygen and good permselectivity [α(O2/N2)]. The composite membrane with the polyimides skin at 40-times coatings had a gas permeation rate of oxygen range from 83 × 10−5 to 130 × 10−5 cm3(STP) s−1 cm−2 cmHg−1, and a permselectivity [α(O2/N2)] range of 3.57 to 5.60. The composite membrane with poly (amide-imide)s skin at 40-times coatings had a gas permeation rate of oxygen range from 102 × 10−5 to 146 × 10−5 cm3(STP) s−1 cm−2 cmHg−1, and the permselectivity (α(O2/N2)) range from 3.20 to 4.96.  相似文献   

6.
This work presents the electrochemical and structural study of the dual modified composite LiBOB-based polymer electrolyte. Modification has been carried out by calix[6]pyrrole (CP) anion trap and nanosize silica filler. The main advantage of the use of LiBOB salt is the high ionic conductivity at near-ambient temperatures and low solid-electrolyte interphase (SEI) resistance. The conductivity of LiBOB:PEO20:CP0.125 with SiO2 is slightly lower than 10−5 Scm−1 at 30 °C, a value higher by about two orders of magnitude than that of the semi-crystalline LiCF3SO3 (LiTf)-PEO system. At 75 to 90 °C the bulk ionic conductivity of modified LiBOB polymer electrolyte approaches 1 mScm−1. The transference number of dual-modified LiBOB-polymer electrolyte is about 0.8 at 75 °C. Cyclic voltammetry tests showed a wide electrochemical stability window of the composite polymer electrolyte. The peak power of Li/MoOxSy cell with the polymer electrolyte film containing CP and SiO2 reaches 2.2 mW/cm 2 and 3.0 mW/cm 2 at 90 and 110 °C, respectively.  相似文献   

7.
J. Li  S. Wang  R. Liu  T. Wen  Z. Wen 《Fuel Cells》2009,9(5):657-662
Bi1.4Er0.6O3‐(La0.74Bi0.10Sr0.16)MnO3‐δ (ESB‐LBSM) composite cathodes were fabricated by impregnating the ionic conducting ESB matrix with the LBSM electronic conducting materials. The ion‐impregnated ESB‐LBSM cathodes were beneficial for the O2 reduction reactions, and the performance of these cathodes was investigated at temperatures below 700 °C by AC impedance spectroscopy and the results indicated that the ion‐impregnated ESB‐LBSM system had an excellent performance. At 700 °C, the lowest cathode polarisation resistance (Rp) was only 0.07 Ω cm2 for the ion‐impregnated ESB‐LBSM system. For the performance testing of single cells, the maximum power density was 1.0 W cm–2 at 700 °C for a cell with the ESB‐LBSM cathode. The results demonstrated that the unique combination of the ESB ionic conducting matrix with electronic conducting LBSM materials was a valid method to improve the cathode performance, and the ion‐impregnated ESB‐LBSM was a promising composite cathode material for the intermediate‐temperature solid oxide fuel cells.  相似文献   

8.
A series of six composite membranes was prepared with two polymer electrolytes and three inorganic fillers, namely, silica, titania, and zirconia by a solution casting method. Two polymer electrolytes, that is, anion‐exchange membranes, were prepared from polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (PSEBS) and polysulfone by chloromethylation and quaternization. A preliminary characterization of the ionic conductivity, methanol permeability, and selectivity ratio was done for all of the prepared composite membranes to check their suitability to work in direct methanol alkaline membrane fuel cells (DMAMFCs). The DMAMFC performance was analyzed with an in‐house fabricated single cell unit with a 25‐cm2 area. Maximum performance was achieved for the composite membrane quaternized PSEBS/7.5% TiO2 and was 74.5 mW/cm2 at 60°C. For the comparison purposes, a commercially available anion‐exchange membrane (Anion Membrane International‐7001) was also investigated throughout the study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Polyamides were synthesized by interfacial polycondensation of 2,3‐bis(4‐chloroformylphenyl)quinoxaline (BCFPQ) and several aliphatic diamines using a phase transfer catalyst, and their adhesive property for stainless steel was investigated. The inherent viscosity of the obtained polyamides ranged from 0.37 to 1.24 dL g−1. The glass transition temperatures of the polyamides ranged between 154 and 201°C, and their thermal decomposition temperatures were above 450°C. The polyamides were soluble in several organic solvents, including m‐cresol, N‐methyl‐2‐pyrrolidone (NMP), and formic acid. The adhesive property for stainless steel was examined by a standard tensile test. One member of the series, polyamide P8, derived from BCFPQ and 1,8‐octanediamine, displayed high tensile strength with values of 232 kgf cm−2 at 20°C, 173 kgf cm−2 at 120°C, and 137 kgf cm−2 at 180°C. Thus, the tensile strength of P8 decreased at 180°C, but the decrease was much smaller than that of an epoxy resin in wide use as a metal adhesive. Heat distortion temperature, measured by thermal mechanical analysis, of P8 was 191°C. This suggested that P8 possessed high thermal resistance in metal adhesives. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1366–1370, 1999  相似文献   

10.
The permeability coefficients of O2, N2, and CO2 gases at 25°C were examined for composite membranes that were prepared by filling poly(ethylene oxide)(PEO) with different molecular weights into a porous membrane. The permeability coefficients of O2, N2, and CO2 were 2 × 10−10 – 4 × 10−10, 5 × 10−11 – 9.5 × 10−11, and 6 × 10−10 – 1 × 10−9 (cm3 STPcm/cm2 s cmHg), respectively. The higher permeability coefficients of CO2 are explained in terms of high solubility of CO2 in filled PEO. The permeability coefficient of CO2 was affected by the degree of crystallinity of PEO in the composite. On the other hand, there was little effect of crystallinity on O2 and N2 permeability coefficients. Some probable relationships between selectivities of O2 to N2 and CO2 to N2 and the degree of crystallinity of PEO were observed. The CO2 gas permeability coefficients of the composite membrane for PEO50000 (Mw = 5 × 104) showed a marked change due to melting or crystallization of PEO. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2733–2738, 1999  相似文献   

11.
H. Shi  Z. Ding  G. Ma 《Fuel Cells》2016,16(2):258-262
A new series of cobalt‐free perovskite‐type oxides, Nd0.5Ba0.5Fe1–xNixO3–δ (0 ≤ x ≤ 0.15), have been prepared by a citric acid‐nitrate process and investigated as cathode materials for proton conducting intermediate temperature solid oxide fuel cells (IT‐SOFCs). The conductivity of the oxides was measured at 300–800 °C in air. It is discovered that partial substitution of Ni for Fe‐sites in Nd0.5Ba0.5Fe1–xNixO3–δ obviously enhances the conductivity of the oxides. Among the series of oxides, the Nd0.5Ba0.5Fe0.9Ni0.1O3–δ (NBFNi10) exhibits the highest conductivity of 140 S cm−1 in air at 550 °C. A single H2/air fuel cell with proton‐conducting BaZr0.1Ce0.7Y0.2O3–δ (BZCY) electrolyte membrane (ca. 40 μm thickness) and NBFNi10‐BZCY composite cathode and NiO‐BZCY composite anode was fabricated and tested at 600–700 °C. The peak power density and the interfacial polarization resistance (Rp) of the cell are 490 mW cm−2 and 0.15 Ω cm2 at 700 °C, respectively. The experimental results indicate that NBFNi10 is a promising cathode material for the proton‐conducting IT‐SOFCs.  相似文献   

12.
Improving the dimensional thermal stability and electrochemical performance of polyethylene (PE) membrane is critical to enhance the safety performance of lithium-ion battery. In this paper, PE membranes are modified by lithium bis(trifuoromethanesulfonyl)imide (LiTFSI) solution and then coated with nano-SiO2/polyvinyl alcohol solution to obtain composite membranes (PE@LnSiO2, where n represents the concentration of LiTFSI solution). The obtained PE@L4SiO2 (LiTFSI solution concentration is 4%) composite membrane possesses a thermal shrinkage rate of only 17% at 150 °C, which is far superior to that of the PE separator. The ionic conductivity of the composite membrane is 16.9 × 10−4 S cm−1 at room temperature (RT), and the battery impedance decreases to 154 Ω, which is remarkably better than that of the PE membrane (188 Ω). The battery delivers a reversible discharge capacity of 164 mAh g−1 at 0.2 C under RT after 250 cycles, and the coulomb efficiency remains above 99%. The battery also has a high discharge capacity of 132 mAh g−1 at 2 C, which indicates that it has excellent rate performance. Therefore, this research successfully explores a simple method to effectively improve the dimensional thermal stability of PE separator, as well as the electrochemical and safety performance of lithium battery.  相似文献   

13.
In this work, La0.6Sr0.4CoO3 – δ/Ce1 – xGdxO2 – δ (LSC/GDC) composite cathodes are investigated for SOFC application at intermediate temperatures, especially below 700 °C. The symmetrical cells are prepared by spraying LSC/GDC composite cathodes on a GDC tape, and the lowest polarisation resistance (Rp) of 0.11 Ω cm2 at 700 °C is obtained for the cathode containing 30 wt.‐% GDC. For the application on YSZ electrolyte, symmetrical LSC cathodes are fabricated on a YSZ tape coated on a GDC interlayer. The impact of the sintering temperature on the microstructure and electrochemical properties is investigated. The optimum temperature is determined to be 950 °C; the corresponding Rp of 0.24 Ω cm2 at 600 °C and 0.06 Ω cm2 at 700 °C are achieved, respectively. An YSZ‐based anode‐supported solid oxide fuel cell is fabricated by employing LSC/GDC composite cathode sintered at 950 °C. The cell with an active electrode area of 4 × 4 cm2 exhibits the maximum power density of 0.42 W cm–2 at 650 °C and 0.54 W cm–2 at 700 °C. More than 300 h operating at 650 °C is carried out for an estimate of performance and degradation of a single cell. Despite a decline at the beginning, the stable performance during the later term suggests a potential application.  相似文献   

14.
This study investigated a simple synthesis of a crosslinked poly(vinyl alcohol)/ graphene oxide composite membrane with lower ethanol permeability membrane for passive direct ethanol–proton exchange membrane fuel cells (DE-PEMFCs). The chemical and physical structure, morphologies, ethanol uptake and permeability, ion exchange capacities, water uptake, and proton conductivities were determined and found that transport properties of the membrane were affected by the GO loading. The composite membrane with optimum GO content (15 wt %) exhibited the highest proton conductivity of 9.5 × 10−3 Scm−1 at 30°C, 3.24 × 10−2 Scm−1 at 60°C, respectively and reduced ethanol permeability until 1.75 × 10−7 cm2 s−1. In the passive DE-PEMFC, the power density at 60°C were obtained as 5.84 mW cm−2 higher than those by commercial Nafion 117 is 4.52 mW cm−2. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46928.  相似文献   

15.
D. Xie  W. Guo  R. Guo  Z. Liu  D. Sun  L. Meng  M. Zheng  B. Wang 《Fuel Cells》2016,16(6):829-838
A series of iron‐based perovskite oxides BaFe1−xCuxO3−δ (x = 0.10, 0.15, 0.20 and 0.25, abbreviated as BFC‐10, BFC‐15, BFC‐20 and BFC‐25, respectively) as cathode materials have been prepared via a combined EDTA‐citrate complexing sol‐gel method. The effects of Cu contents on the crystal structure, chemical stability, electrical conductivity, thermal expansion coefficient (TEC) and electrochemical properties of BFC‐x materials have been studied. All the BFC‐x samples exhibit the cubic phase with a space group Pm3m (221). The electrical conductivity decreases with increasing Cu content. The maximum electrical conductivity is 60.9 ± 0.9 S cm−1 for BFC‐20 at 600 °C. Substitution of Fe by Cu increases the thermal expansion coefficient. The average TEC increases from 20.6 × 10−6 K−1 for BFC‐10 to 23.7 × 10−6 K−1 for BFC‐25 at the temperature range of 30–850 °C. Among the samples, BFC‐20 shows the best electrochemical performance. The area specific resistance (ASR) of BFC‐20 on SDC electrolyte is 0.014 Ω cm2 at 800 °C. The single fuel cell with the configguration of BFC‐20/SDC/NiO‐SDC delivers the highest power density of 0.57 W cm−2 at 800 °C. The favorable electrochemical activities can be attributed to the cubic lattice structure and the high oxygen vacancy concentration caused by Cu doping.  相似文献   

16.
X. Wu  K. Scott 《Fuel Cells》2013,13(6):1138-1145
Titanate nanotubes (TiO2‐NT) were functionalized with sulfonic acid functional groups and characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). Results confirmed that sulfonic acid groups were grafted onto TiO2‐NT with a uniform distribution. When the functionalized titanate nanotube (F‐TiO2‐NT) was incorporated in perfluorosulfonic acid membranes, the membrane conductivity and water uptake were improved. Polymer electrolyte membrane (PEM) fuel cells using 5 wt.% F‐TiO2‐NT incorporated composite membrane exhibited a peak power density of 429 mW cm–2 with non‐humidified O2 at 90 °C, which is about four times higher than that with Nafion 117 membrane at identical conditions. PEMWE with 5 wt.% F‐TiO2‐NT incorporated composite membrane achieved 1,000 mA cm–2 current density at voltages below 1.6 V at 90 °C without back pressurizing.  相似文献   

17.
《Ceramics International》2019,45(15):18924-18930
Composite ceramic membrane is one of the most attractive concepts which combines the advantages of different phases into a single membrane matrix. Recently, the reported significant increased oxygen surface kinetics on the Perovskite/Ruddlesden-Popper composite system because of the formation of novel and fast oxygen transport paths along the hetero-interface has been implanted into the oxygen permeation membrane system. In this work, a novel La0.6Sr0.4Co0.2Fe0.8O3-δ-(La0.5Sr0.5)2CoO4+δ (LSCF-LSC) composite hollow fiber membrane is synthesized with oxygen permeation flux of 4.52 mL min−1 cm−2 at 950 °C. It presents round 4 times and 2.3 times of that of the single LSCF membrane and LSC-coated LSCF membrane at 900 °C. For better comparison, (La0.576Sr0.424)1.136Co0.3Fe0.7O3-δ (LSCF-new) is prepared based on the composition of LSCF-LSC composite. The enhanced oxygen permeability was further investigated through electrochemical impedance spectroscopy (EIS) measurements. We also confirm that LSCF-LSC shows significantly lower area specific resistance (ASRs) for LSCF-LSC|Ce0.8Sm0.2O1.9 (SDC)|LSCF-LSC symmetrical cell relative to other symmetrical cells. This novel LSCF-LSC composite membrane also presents high CO2 tolerance, with stable oxygen permeation fluxes round 2.6 mL min−1 cm−2 at 900 °C for 100 h.  相似文献   

18.
A series of tertiary amine and siloxane crosslinked composite anion exchange membranes were prepared by incorporating 2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane (EHTMS) and N,N,N′,N′-Tetramethyl-1,6-hexanediamine (TMHDA) into N-Methyldiethanolamine (MDEA)-functionalized poly (2,6-dimethyl-1,4-phenylene oxide) (PPO) backbone via sol-gel process. The resultant membranes named as AEM-X (X = 1, 2, 3, 4), which own a three-dimensional (3D) cross-linking structure, exhibit superior swelling resistance, mechanical properties, even the thermal stability is up to 220°C. Compared with AEM-1 (contains no crosslinker), the swelling ratio of AEM-2 obviously decreases by 10.2% at 80°C, while the OH conductivity of AEM-2 has a merely 1.9% decline (20.6 mS cm−1) at 80°C and can maintain 67% of its initial value in a 2 M aqueous NaOH at 80°C for 240 h. The simultaneous introduction of inorganic siloxane and organic linear crosslinker provides a new idea for the preparation of anion exchange membranes with largely improvement in dimensional stability and alkali resistance while the ionic conductivity is kept at comparatively high level.  相似文献   

19.
Z. Hu  W. Tang  D. Ning  X. Zhang  H. Bi  S. Chen 《Fuel Cells》2016,16(5):557-567
A series of anion exchange membranes (AEM) based on block quaternary ammonium poly(arylene ether sulfone) (QA‐bPAES) were successfully synthesized from 9,9′‐bis(4‐hydroxyphenyl) fluorene, 4,4′‐(hexafluoroisopropylidene) diphenol and 4,4′‐difluorodiphenyl sulfone via block polymerization, chloromethylation, quaternization, alkalization and solution casting. Properties of the obtained QA‐bPAES membranes, including ion exchange capacity (IEC), water uptake, swelling ratios, methanol permeability and ion conductivity were investigated. The obtained QA‐bPAES membranes showed low water uptakes, high ion conductivities and good physical and chemical stability. For example, the membrane of QA‐bPAES(20/10)‐1.34 with IEC of 1.34 mmol g−1 exhibited swelling ratios of 5.0% and 5.1% in in‐plane and through‐plane direction, respectively, and ion conductivity of 15.6 mS cm−1 in water at 60 °C with low methanol permeability of 1.06 × 10−7 cm2 s−1 (25 °C). All the results indicated that this type of block membranes had good potentials for alkaline anion exchange membrane fuel cell applications.  相似文献   

20.
Y. Zheng  T. Chen  Q. Li  W. Wu  H. Miao  C. Xu  W. G. Wang 《Fuel Cells》2014,14(6):1066-1070
A 30‐cell solid oxide electrolysis (SOE) stack consisting of 30‐cell planar Ni–YSZ hydrogen electrode‐supported single cell with La0.6Sr0.4Co0.2Fe0.8O3–δ–Ce0.9Gd0.1O1.95 (LSCF–GDC) composite oxygen electrodes, interconnects, and sealing materials was tested at 750 °C in steam electrolysis mode for hydrogen production. The direction of gas flow in the stack was a cross‐flow configuration, and the stack configuration was designed to open gas flow channels at the air outlet. The electrolysis efficiency of the stack was higher than 100% at 90/10H2O/H2 ratio under <0.5 A cm−2 current density. During hydrogen production, the stack was operated at 750 °C under 0.5 A cm−2 constant current density for more than 500 h with 4.06% k h−1 degradation rate. Up to 73% steam conversion rate and 91.6% current efficiency were obtained; the net hydrogen production rate reached as high as 361.4 NL h−1. Our results suggested that the SOE stack that was designed with LSCF–GDC composite oxygen electrode could be used to conduct large‐scale hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号