首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《应用陶瓷进展》2013,112(8):494-498
Abstract

Sr1?xCexMnO3 (SCM, 0·1≤x≤0·4) powders were synthesised by an ethylenediaminetetraacetic acid citrate complexing process, and their properties were investigated. The synthesised Sr1?xCexMnO3 powders showed a pure perovskite phase, whereas the composition with x?=?0·4 had second phases. The unit cell volumes increased with increasing Ce content because substituted Ce ions formed some Mn3+ ions, which have a larger ionic radius than Mn4+. The electrical conductivity improved with increasing Ce content up to x?=?0·3 (291 S cm?1 at 750°C), revealing a double exchange interaction. Although the electrical conductivity was increased by doping Ce ions, the polarisation resistance increased due to the increase in lattice distortion with doping Ce content. The substitution of Ce ions for Sr in SrMnO3 led to the formation of larger Mn3+ ions than Mn4+ ions and lattice distortion, which would affect the electrical and oxygen ion conductivity.  相似文献   

2.
《Ceramics International》2023,49(3):4386-4392
Nd1-xSrxMnO3 (NSMO, x = 0.280, 0.300, 0.330, 0.350, and 0.375) polycrystalline ceramics were fabricated using the sol-gel method. The crystal structure, surface morphology, valence state, elements distribution, and electrical properties were examined to understand the effect of Sr doping on NdMnO3 ceramics. The resistivity of the NSMO ceramics was measured using a standard four-probe method. The results obtained revealed that Sr doping significantly decreased the resistivity of the ceramics, which can be explained by the double exchange (DE) interaction and small-polaron hopping (SPH) model. The Nd0.70Sr0.30MnO3 ceramic had a positive temperature coefficient (PTC) of resistivity (16.69% K?1) at 197.5 K, and is expected to be used for preparing electronic switches with high sensitivity. Additionally, the NSMO ceramics maintained a stable negative temperature coefficient (NTC) of resistivity (?1% K?1) for x = 0.300 in the temperature range of 210.6–342.5 K. In conclusion, it is worth exploring materials with a high PTC and NTC over an extended temperature range, possessing the double potential function for high sensitivity or wide-temperature detection for electronic switches or infrared bolometers.  相似文献   

3.
《Ceramics International》2022,48(8):11094-11102
Based on the analysis of crystal structure, Mn3+/Mn4+ pairs, distortion of MnO6 octahedron, and electrical transport properties of La1-xCaxMnO3 and La1-xSrxMnO3 materials, room-temperature coefficient of resistivity (TCR) of La0.7Ca0.3-xSrxMnO3 (LCSMO) films was optimized by Ca/Sr co-doping at the A-site. LCSMO films are successfully fabricated on LaAlO3 (100) substrates via facile spin coating technology. The microstructure of LCSMO films is characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy and X-ray photoemission spectroscopy. Results reveal that A-site Ca/Sr co-doping significantly influenced crystal structure, formation of Mn3+/Mn4+ pairs, and distortion of MnO6 octahedron. The correlation between microstructure and electrical transport properties was explained through the phenomenological percolation model, double-exchange mechanism and Jahn-Teller effect. Furthermore, the TCR reached 10.2% K-1 at 296.1 K in La0.7Ca0.18Sr0.12MnO3 films.  相似文献   

4.
The effects of strontium doping on the structural properties and magnetic ordering of Nd1?xSrxFeO3 orthoferrite system have been studied by employing macroscopic and microscopic structural techniques like X-ray diffraction, scanning electron microscopy and 57Fe Mössbauer spectroscopy. X-ray diffraction confirmed that single phase materials have been synthesized. It has been observed that orthorhombic distortion, density and porosity have decreased; whereas, grain size, tolerance factor and symmetry have increased with increase in the strontium concentration. Mössbauer results showed an increase in the Fe4+/Fe3+ ratio, sagging and local octahedral distortions while decrease in the magnetic ordering with increase in the strontium content. The origin behind anomalous octahedral distortions in this system has been attributed to the decrease in the oxidation state and mismatch in the ionic radii of A-site cations and increase in the concentration of Fe4+, due to Sr2+ doping at Nd3+ sites. The collapse of magnetic ordering has been ascribed to the weakening of super-exchange interactions, dilution of strong long range magnetic sub-lattice of high spin Fe3+ (five unpaired electrons) by relatively lower spin of high spin Fe4+ (four unpaired electrons) and increase in the spin–spin relaxation frequency.  相似文献   

5.
This work investigated the near‐infrared (NIR) emission properties of mCe3+, xNd3+ codoped Sr3?m?x(Si1?m?xAlm+x)O5 phosphors. Samples with various doping concentrations were synthesized by the high‐temperature solid‐state reaction. Al3+ ions have the ability to promote Ce3+ ions to enter into the Sr2+ sites and to improve the visible emission of Ce3+. Thus the NIR emission of Nd3+ is enhanced by the energy‐transfer process, which occurred from Ce3+ to Nd3+. The device based on these NIR emission phosphors is fabricated and combined with a commercial c‐Si solar cell for performance testing. Short‐circuit current density of the solar cell is increased by 7.7%. Results of this work suggest that the Sr2.95Si0.95Al0.05O5:0.025Ce3+, 0.025Nd3+ phosphors can be used as spectral convertors to improve the efficiency of c‐Si solar cell.  相似文献   

6.
In this work, we present a systematic study on the effect of monovalent and divalent cation inclusion on the magnetic properties of the manganites series La0.80(Ag1?xSrx)0.20MnO3 (x = 0.0–1.0) synthesized by the solid‐state reaction method. The decreasing Sr:Ag proportion across the compositional series was verified by X‐ray photoelectron spectroscopy. Concerning magnetic properties, the hysteresis curves manifested an initial paramagnetic response at x = 0.0, followed by a progressive ferromagnetic behavior with an optimum Ag:Sr ratio at x = 0.75, for which an enhanced saturation magnetization of 51 Am2/kg and a Curie temperature of 336 K were recorded. Results are explained on the basis of the effect of the increasing unit cell volume on the double exchange interaction between magnetic Mn3+– Mn4+ atoms.  相似文献   

7.
A series of quaternary nitride solid solutions with a general formula of Sr1?xCaxLiAl3N4:0.5%Eu2+ was synthesized by a solid‐state reaction method. The experimental results showed that a proper amount of Ca‐doping can improve the crystallinity and the photoluminescence properties of the produced phosphors. Rietveld refinement showed that the volume of the unit cell shrank with the increase of Ca substitution for Sr, which resulted in a red shift of the emission spectra from 654 to 665 nm under blue excitation at 475 nm. Rietveld refinement and CASTPE calculations suggested that Ca2+ ions prefer to occupy the smaller Sr(I) sites in the crystal lattice, which increases the amount of Eu2+ ions in Sr(II) sites and enables the tuning of the chromaticity coordinates of the obtained phosphors. The thermal stability of the produced phosphors is better than that of commercial Sr2Si5N8:Eu2+ phosphor. The experimental results qualify the solid‐solution Sr1?xCaxLiAl3N4:0.5%Eu2+ for consideration as a potential candidate for application in white LEDs.  相似文献   

8.
In this work, the physical properties of nanocrystalline samples of La0.7Sr0.3Mn1−xFexO3 (0.0 ≤ x ≤ 0.20) perovskite manganites synthesized by the reverse micelle (RM) technique were explored in detail. The phase purity, crystal structure, and crystallite size of the samples were determined using X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. All the samples had rhombohedral crystal structure and crystallite size increased with increase in Fe content in La0.7Sr0.3MnO3. The scanning electron micrographs (SEMs) exhibited smooth surface morphology and nonuniform shape of the particles. The optical properties studied using UV-visible absorption spectroscopy revealed a decrease in the absorbance and optical band gap with an increase in Fe content in La0.7Sr0.3MnO3 compound. The temperature-dependent resistivity measurements revealed semiconducting nature of x = 0 and 0.1 samples up to the studied temperature range, while a metal-to-insulator transition was observed at higher Fe doping. Magnetic studies revealed weak ferromagnetism in all the samples and a reduction in the maximum magnetization with an increase in Fe content. A close correlation between electrical transport and magnetic properties was observed with the doping of Fe ion in La0.7Sr0.3MnO3 at Mn site. These results advocate strong interactions associated with the double exchange mechanism among Fe3+ and Mn3+ ions.  相似文献   

9.
Magnetic properties of La1-xSrxFeO3 (x = 0, 0.1, 0.2, 0.3, 0.4 and 0.5) have been investigated in a wide magnetic field range from 0 to 35 T using pulsed high magnetic field magnetization and electron spin resonance measurements. Experimental results show that both the non-magnetic Sr2+ dopant and high magnetic fields affect the stability of the robust antiferromagnetic coupling between Fe ions and induce new phase transitions. Especially the phase transition temperatures and hysteresis behavior show a high sensitivity on the Sr dopant and its doping level. On the other hand, a nonlinear Sr doping level dependence of the transition temperatures and hysteresis behavior were observed, indicating that the charge disproportionation is not the sole influence. Thus, in the series Sr doping La1-xSrxFeO3 samples, the dopant induced FeO6 octahedron distortion and charge disproportionation are coexistence and competition, which leads to a complicated and Sr doping level nonlinearly dependent magnetization behavior.  相似文献   

10.
The electrochemical properties of Sr1−xCexMnO3 (SCM, 0.1≤x≤0.4)–Gd0.2Ce0.8O2−x (GDC) composite cathodes were determined by impedance spectroscopy. The study focused on the doping effect of Ce in the composite cathodes. Single-phase perovskite was obtained for 0.1≤x≤0.3 in SCM. No reaction occurred between the Sr0.7Ce0.3MnO3 electrode and the GDC electrolyte at an operating temperature of 800 °C for 100 h. In the single phase perovskite region, lattice expansion occurred due to the reduction of Mn4+ to Mn3+ at B-sites, and this was attributed to an increase in Ce content. Ce doping enhanced the electrode performance of SCM–GDC composite cathodes, and best electrode performance was achieved for the Sr0.7Ce0.3MnO3–GDC composite cathode (0.93 Ω cm2 and 0.47 Ω cm2 at 750 °C and 800 °C, respectively). The improvement in electrode performance was attributed to increases in charge carriers induced by a shift of some Mn from +4 to +3 and to the formation of surface oxygen vacancies caused by Mn4+ to Mn3+ conversion at high temperatures.  相似文献   

11.
Z. Li  B. Wei  Z. Lü  X. Zhu  X. Huang  Y. Zhang  Z. Guo  W. Su 《Fuel Cells》2012,12(4):633-641
In this study, BaxSr1–xCo0.8Fe0.2O3–δ (BSCF) doped with trace of Gd were studied for phase structures and properties about thermal expansion, electrical conductivity, and electrocatalytic activity. The solution range of barium in BaxSr1–xCo0.8Fe0.2O3–δ can be extended to 0.1 ≤ x ≤ 0.7 after the introduction of small amount of Gd3+ ions (only for 5%) into the Ba/Sr‐site. The calculation results of the crystal structure and the crystal lattice energy show that the ratio of Ba/Sr and doping of Gd3+ lead to increase the lattice parameter and the Co/Fe ionic average valence state in B‐site. Moreover, the ratio of Ba/Sr and doping of Gd3+ were found to have significant impacts on the high‐temperature physical properties and electrochemical characteristics. All oxides exhibited decreases in the thermal expansion coefficient (TEC) and electrical conductivity with increasing Ba/Sr ratio. Barium insertion was found to change the area‐specific resistance (ASR) of porous (not dense) cathodes. An ASR values of 0.048, 0.072, 0.064, 0.121, and 0.059 Ω cm2 under air condition were observed at 650 °C for BSGCF with x = 0.1, 0.2, 0.3, 0.5, and 0.7, respectively.  相似文献   

12.
Control of light‐induced electron generation is of vital importance for the application of caged phosphors. For Eu‐doped Ca11.94?xSrxAl14O33 caged phosphors, the suppressed effect of strontium doping on the light‐induced electrons is observed compared to the europium‐free Ca11.94?xSrxAl14O33 phosphors. In the presence of europium ions, Sr doping will promote the reduction of Eu3+ to Eu2+. The Rietveld refinement suggests that unit cell volumes of the Ca11.94?xSrxAl14O33:Eu0.06 samples are expanded when Ca2+ ions are replaced by Sr2+ ions. The absorption and FTIR transmittance spectra confirm that the competitive reaction of encaged O2? anions with H2 is suppressed. For the sample (x=0.48), the higher thermal activation energy (~0.40 eV) for luminescence quenching can be attributed to the more rigid framework structure after Sr doping. For Ca11.94?xSrxAl14O33:Eu0.06 phosphors, their emission colours are tuned from red to purple upon 254 nm excitation and from pink to blue under electron beam excitation through Sr substitution. The insight gained from this work may have a significant guiding to design new phosphors for LED and FEDs and novel nanocaged mutifunctional materials.  相似文献   

13.
The oxidation state of manganese in the Nd2?x Sr1+x Mn2O7?δ solid solution was determined by X-ray photoelectron spectroscopy and by calculating the oxygen nonstoichiometry based on the gravimetric data. As a result of the heterovalent replacement of Nd3+ with Sr2+, the change in the oxidation state of manganese occurs in different ways, i.e., it increases at x > 0 and decreases at x < 0. In the latter case, some oxygen ions acquire the oxidation state of ?1. The samples slowly cooled under oxidative conditions possess a significant positive oxygen non-stoichiometry, which tends to decrease after Nd3+ is replaced with Sr2+. An excess of oxygen stabilizes the crystal structure of Nd1+x Sr2?x Mn2O7?δ.  相似文献   

14.
The crystal structure, thermal expansion behavior and electrical conductivity of Nd1-xSrxMnO3±δ (x=0–0·5) perovskite oxides were investigated. The chemical compatibility of the compositions with 40 and 50 mol% Sr with Gd2O3 doped CeO2 (CGO) electrolyte was also studied. An orthorhombic GdFeO3-type symmetry (space group Pbnm, z=4) was identified for all perovskite oxides, and the lattice parameters were determined. As the level of Sr doping increases, the pseudo-cubic lattice constant decreases, and the thermal expansion coefficient increases. The electrical conductivity can be described by the small polaron hopping conductivity model. The conductivity increases on increasing Sr doping, while the activation energy decreases. The compositions with 40 and 50 mol% Sr show very good thermal expansion and chemical compatibility with CGO electrolyte and can be considered as candidate intermediate temperature solid oxide fuel cell cathode materials.  相似文献   

15.
With the aim of achieving a high-performance 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 material, a series of 0.5Li2MnO3·0.5LiMn x Ni y Fe(1−xy)O2 (0.3 ≤ x ≤ 0.5, 0.4 ≤ y ≤ 0.5) samples with low Fe content was synthesized via coprecipitation of carbonates. Its crystal structure and electrochemical performance were characterized by means of powder X-ray diffraction, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, galvanostatic charge/discharge testing, cyclic voltammetry, and electrochemical impedance spectra. Rietveld refinements with a model integrating R [`3] \overline{3} m and Fm [`3] \overline{3} m indicate that a low concentration of Fe incorporated in 0.5Li2MnO3·0.5LiMn0.5Ni0.5O2 decrease a disordered cubic domain of the composite structure. The preferential distribution of Fe in cubic rock-salt contributes to an unimaginable decrease of c-axis parameter of the predominant layered structure as the Fe content increases. Moreover, including Fe as a dopant can kinetically improve crystallization and also change the ratio of Mn3+/Mn4+ and Ni3+/Ni2+. As a result, 0.5Li2MnO3·0.5LiMn0.4Ni0.5Fe0.1O2 exhibits lower Warburg impedance and higher reversible capacity than the undoped material.  相似文献   

16.
In order to study the effect of Sr substitution on structural and dielectric properties of Bi1−xSrxMnO3 (0.40≤x≤0.55) compounds were synthesized by the solid state reaction method. The as-prepared samples were characterized by X- ray diffraction (XRD) and dielectric measurements to correlate structural changes with dielectric properties. The XRD data were further analyzed by the Rietveld refinement. The highest dielectric constant was observed in Bi0.55Sr0.45MnO3 and Bi0.5Sr0.5MnO3 systems (∼106) mainly because of orientation polarization. The charge ordering temperature decreases with increasing Sr concentration in Bi1−xSrxMnO3 systems.  相似文献   

17.
《Ceramics International》2017,43(17):14962-14967
Effect of Zn doping on the structural and magnetic properties of NdMnO3 has been investigated by neutron diffraction and dc magnetic susceptibility measurements. The partial replacement of Mn3+ by Zn2+ results in the decrease in TN. In the temperature dependent magnetization measurements, a broad hump and a sharp peak has been observed around ~ 50 K and 10 K respectively for both the samples. Thermal hysteresis in magnetization between cooling and heating runs indicate first-order phase transition. Magnetization measurements on NdMn0.95Zn0.05O3 sample clearly show that, 5% Zn-doping in NdMnO3 results in the suppression in magnetism which is evident from the weakening of Nd–Mn interaction below TN, and resulting in antiferromagnetic coupling of Mn3+ ions along x-axis with Mn3+ moments oriented parallel or antiparallel to the x-component of Nd3+ moments.  相似文献   

18.
《Ceramics International》2020,46(5):6293-6299
Perovskite Er1-xCaxMnO3 (x = 0, 0.1, 0.2, 0.25, 0.3, 0.4, 0.5) was synthesized using a solid-state method. Thermal expansion behavior was tested using a thermal dilatometer and high-temperature X-ray diffraction (XRD). The experimental results indicated the doping contents of Ca (x) in the Er1-xCaxMnO3 have a dramatic effect on their thermal expansion behavior. The samples of Er1-xCaxMnO3 (x = 0.1,0.2 and 0.25) exhibit positive thermal expansion (PTE) characteristics while Er0.7Ca0.3MnO3 (x = 0.3) exhibits a negative thermal expansion (NTE) property with a thermal expansion coefficient of −3.1 × 10−6 K1 in room temperature (RT) −750 K. In addition, Er0.6Ca0.4MnO3 (x = 0.4) exhibits NTE properties only at RT–500 K, and Er0.5Ca0.5MnO3 (x = 0.5) exhibits PTE properties at RT–750 K. The thermal shrinkage mechanism is the Jahn–Teller effect of the Mn3+ ions and the double exchange of Mn3+–O–Mn4+ in Er0.7Ca0.3MnO3. This phenomenon causes Mn–O octahedral distortion and oxygen vacancy, causing Er0.7Ca0.3MnO3 to become anisotropic. This feature results in the elastic deformation of Er0.7Ca0.3MnO3 during heating, which consumes the void and displays NTE at macro level.  相似文献   

19.
Ba0.5Sr0.5TiO3 ceramics with different Mn-doping amount (Ba0.5Sr0.5Ti1-xMnxO3, x = 0, 0.1%, 0.3%, 0.5%) were prepared by spark plasma sintering method. The single phase with cubic structure symmetry was confirmed and a gradual increase in lattice parameter with increasing x was observed. Fine grains with dense microstructure were revealed from the SEM images, while an obvious increase in grain size was detected when x = 0.5%. An optimized doping amount of 0.3% was determined, showing high dielectric constant (εr ≈ 2190), low dielectric loss (tanδ ≈ 2.78 × 10−3), enhanced breakdown strength (290 kV/cm), and high-energy storage density (1.69 J/cm3) at room temperature. A possible mechanism, namely defect dipoles formation mechanism, was employed to explain the optimization of energy storage performance, and further confirmed from the variation in AC conductivity.  相似文献   

20.
《Ceramics International》2022,48(24):36880-36887
Multicomponent perovskite nanomaterials Nd0.7Ca0.3Mn1-xNixO3 are synthesized and labeled as NMO, NCMO, NCMNO1, NCMNO2 and NCMNO3. Structural, magnetic and magnetocaloric properties have been investigated. X-ray diffraction analysis using Rietveld refinements confirm the formation of NdMnO3 nanocrystalline orthorhombic phase (Pnma) with the appearance of a secondary cubic phase Nd2O3 as justified by Hume-Rothery rule. The substitution of ions (Nd/Ca and Mn/Ni) alters the crystallite size, microstrain and the percentage of Nd2O3 phase. The replacement of Mn ions by Ni2+reduces the magnetization and changes the Curie temperature (Tc). The magnetocaloric effect has also been assessed by means of magnetic-entropy change, which is determined from field dependence of magnetization. It is found that a large magnetic-entropy change takes place around Tcfor the studied nanocomposites. Under an applied field interval of 100 kOe, the maximum magnetic-entropy changes -ΔSM = 2.07, 1.88 J/kg.K at ΔH = 7T occurs for NCMNO1 and NCMNO3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号