首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various Ni‐Co bimetallic catalysts were prepared by incorporating sol‐gel and wet impregnation methods. A laboratory‐scale fixed‐bed reactor was employed to investigate their effects on hydrogen production from steam reforming of bio‐oil. The catalyst causes the condensation reaction of bio‐oil, which generates coke and inhibits the formation of gas at temperatures of 250 °C and 350 °C. At 450 °C and above the transformation of bio‐oil is initiated and gaseous products are generated. The catalyst also can promote the generation of H2 as well as the transformation of CO and CH4 and plays an active role in steam reforming of bio‐oil or gaseous products from bio‐oil pyrolysis. The developed 3Ni9Co/Ce‐Zr‐O catalyst achieved maximum hydrogen yield and lowest coke formation rate and provided a better stability than a commercial Ni‐based catalyst.  相似文献   

2.
Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed‐bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd‐CGO). Three main types of experiments were performed to study catalytic activity and effect of sulfur poisoning: (i) CH4 and CO2 dissociation; (ii) biogas (60% CH4 and 40% CO2) temperature‐programmed reactions (TPRxn); and (iii) steady‐state biogas reforming reactions followed by postmortem catalyst characterization by temperature‐programmed oxidation and time‐of‐flight secondary ion mass spectrometry. Results showed that Ni/ScYSZ/Pd‐CGO was more active for catalytic dissociation of CH4 at 750 °C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750 °C. The presence of Pd‐CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190 °C) for CH4 conversion during temperature‐programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd‐CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming. Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming.  相似文献   

3.
In recent years, the interest for using biogas derived from biomass as fuel in solid oxide fuel cells (SOFCs) has increased. To maximise the biogas to electrical energy output, it is important to study the effects of the main biogas components (CH4 and CO2), minor ones and traces (e.g. H2S) on performance and durability of the SOFC. Single anode‐supported SOFCs with Ni–Yttria‐Stabilised‐Zirconia (YSZ) anodes, YSZ electrolytes and lanthanum‐strontium‐manganite (LSM)–YSZ cathodes have been tested with a CH4–H2O–H2 fuel mixture at open circuit voltage (OCV) and 1 A cm–2 current load (850 °C). The cell performance was monitored with electric measurements and impedance spectroscopy. At OCV 2–24 ppm H2S were added to the fuel in 24 h intervals. The reforming activity of the Ni‐containing anode decreased rapidly when H2S was added to the fuel. This ultimately resulted in a lower production of fuel (H2 and CO) from CH4. Applying 1 A cm–2 current load, a maximum concentration of 7 ppm H2S was acceptable for a 24 h period.  相似文献   

4.
J. Qiao  N. Zhang  Z. Wang  Y. Mao  K. Sun  Y. Yuan 《Fuel Cells》2009,9(5):729-739
CeO2‐Ni/YSZ anodes for methane direct oxidation were prepared by the vacuum mix‐impregnation method. By this method, NiO and CeO2 are obtained from nitrate decomposition and high temperature sintering is avoided, which is different from the preparation of conventional Ni‐yttria‐stabilised zirconia(YSZ) anodes. Impregnating CeO2 into the anode can improve the cell performance, especially, when CH4 is used as fuel. The investigation indicated that CeO2‐Ni/YSZ anodes calcined at higher temperature exhibited better stability than those calcined at lower temperature. Under the testing temperature of 1,073 K, the anode calcined at 1,073 K exhibited the best performance. The maximum power density of a cell with a 10 wt.‐%CeO2‐25 wt.‐%Ni anode calcined at 1,073 K reached 480 mW cm–2 after running on CH4 for 5 h. At the same time, high discharge current favoured cell operation on CH4 when using these anodes. No obvious carbon was found on the CeO2‐Ni anode after testing in CH4 as revealed from SEM and corresponding linear EDS analysis. In addition, cell performance decreased at the beginning of discharge testing which was attributed to the anode microstructure change observed with SEM.  相似文献   

5.
Solid oxide fuel cells with Ni–yittria‐stabilised zirconia (YSZ) anode supports were tested on surrogate natural gas fuels (methane containing 2.5–10% ethane and 1.25–5% propane) and compared with results for pure methane. Inert anode‐side diffusion barriers were found to help suppress coking on the Ni–YSZ anodes. However, carbonaceous deposits were observed on anode compartment surfaces and the barrier layers for all of the natural gas compositions tested. The addition of air to the natural gas was shown to suppress this coking. For natural gas with 5% ethane and 2.5% propane, the addition of 33% air yielded stable, coke‐free operation at 750 °C and 800 mA cm–2. Cell performance on this fuel was only slightly worse than for the same cell operated with dry hydrogen.  相似文献   

6.
Carbon deposition is an issue when operating solid oxide fuel cells (SOFC) on fuels other than hydrogen, and so a variety of strategies have been used to prevent carbon accumulation on the anodes. In this paper, we describe a bilayer anode that contains a functional layer consisting of Ni/YSZ and a conduction layer consisting of Cu/YSZ. The anode‐supported button cells were fabricated using a uni‐axially pressing technique to produce the anode, followed by impregnation with Cu. The cells were tested at 1,023 K in dry CH4 and their performance compared to that of a typical Ni/YSZ anode. The Cu does not catalyze the cracking of methane and as such less carbon deposits in the conduction layer resulting in anode stability for over 100 h. The limitation with using Cu in the anode is the temperature of operation.  相似文献   

7.
Samarium-doped ceria (SDC) is coated onto a Ni/yttria-stabilized zirconia (Ni/YSZ) anode for the direct use of methane in solid-oxide fuel cells. Porous SDC thin layer is applied to the anode using the sol–gel coating method. The experiment was performed in H2 and CH4 conditions at 800 °C. The cell performance was improved by approximately 20 % in H2 conditions by the SDC coating, due to the high ionic conductivity, the mixed ionic and electronic conductive property of the SDC, and the increased triple phase boundary area by the SDC coating in the anode. Carbon was hardly deposited in the SDC-coated Ni/YSZ anode. The cell performance of the SDC-coated Ni/YSZ anode did not show any significant degradation for up to 90 h under 0.1 A cm?2 at 800 °C. The porous thin SDC coating on the Ni/YSZ anode provided the electrochemical oxidation of CH4 over the whole anode, and minimized the carbon deposition by electrochemical carbon oxidation.  相似文献   

8.
Thermodynamic analyses of the reforming of coke oven gas with gasification gas for syngas were investigated as a function of coke oven gas‐to‐gasification gas ratio (1–3), oxygen‐to‐methane ratio (0–1.56), pressure (25–35 bar) and temperature (700–1100 °C). Thermodynamic equilibrium results indicate that the operating temperature should be approximately 1100 °C and the oxygen‐to‐methane ratio should be approximately 0.39, where about 80 % CH4 and CO2 can be converted at 30 bar. Increasing the operating pressure shifts the equilibrium toward the reactants (CH4 and CO2); increasing the pressure from 25 to 35 bar decreases the conversion of CO2 from 73.7 % to 67.8 %. The conversion ratio of CO2 is less than that in the absence of O2. For a constant feed gas composition (7 % O2, 31 % gasification gas, and 62 % coke oven gas), a H2/CO ratio of about 2 occurs at temperatures of 950 °C and above. Pressure effects on the H2/CO ratio are negligible for temperatures greater than 750 °C. The steam produced has an effect on the hydrogen selectivity, but its mole fraction decreases with temperature; trace amounts of other secondary products are observed.  相似文献   

9.
We report a freestanding micro solid oxide fuel cell with both the anode and cathode deposited using electrostatic spray deposition (ESD) technique. The cell is consisted of dense yittria‐stabilized zirconia (YSZ) electrolyte (100 nm thick), porous lanthanum strontium manganite (LSM)–YSZ cathode (∼3 μm thick), and porous NiO‐YSZ anode (∼3 μm thick). LSM‐YSZ and NiO‐YSZ composite powders were initially prepared by glycine nitrate process and super‐critical fluid processes, respectively, and both cathode and anode layers were deposited by the ESD. The resulting freestanding micro cell exhibited an open circuit voltage close to the theoretical value of 1.09 V, and a maximum power density of 41.3 mWcm–2 at 640 °C.  相似文献   

10.
A nickel and yttrium‐stabilized zirconia (Ni‐YSZ) composite is one of the most commonly used anode materials in solid oxide fuel cells (SOFCs). One of the drawbacks of the Ni‐YSZ anode is its susceptibility to deactivation due to the formation of carbonaceous species when hydrocarbons are used as fuel supplies. We therefore initiated an electrochemical study of the influence of methane (CH4) on the performance of Ni‐YSZ anodes by examining the kinetics of the oxidation of CH4 and H2 over operating temperatures of 600–800°C. Anode performance deterioration was then correlated with the degree of carbonization observed on the anode using ex‐situ X‐ray powder diffraction and scanning electron microscopy techniques. Results showed that carbonaceous species led to a significant deactivation of Ni‐YSZ anode toward methane oxidation. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

11.
The anodes for direct utilisation of hydrocarbon fuels have been developed by using Cu/Ceria‐based nano‐composite powders. The CuO/GDC/YSZ–YSZ or CuO/GDC‐GDC nano‐composite powders were synthesised by coating nano‐sized CuO and CeO2 particles on the YSZ or GDC core particles selectively by the Pechini process. Their microstructures and electrical properties have been investigated with long‐term stability in reactive gases of dry methane and air. The anodes fabricated using Cu‐based nano‐composite anodes showed almost no carbon deposition until 500 h in dry CH4 atmosphere. The type of an electrolyte‐supported single cell in conjunction with the Cu/Ceria‐based anode must be selected together for the low melting temperature of Cu/CuO. The GDC electrolyte supported unit cell with the Cu/GDC–GDC anode showed the maximum power density of 0.1 Wcm–2 and long‐term stability for more than 500 h under electronic load of 0.05 Acm–2 at 650 °C in dry methane atmosphere.  相似文献   

12.
Anodes for Solid Oxide Fuel Cell that is capable of directly using hydrocarbon without external reforming have been of great interest recently. In this paper, a three‐layer structure anode running on methane is fabricated by tape casting and screen printing method. The slurry of catalyst layer Cu‐LSCM‐CeO2 (with weight ratios of 1.5:7.0:1.5, 2.0:7.0:1.0, 2.15:7.0:0.85 and 2.25:7.0:0.75, weight ratios of Cu/CeO2 is 1:1, 2:1, 2.5:1 and 3:1, respectively) is screen‐printed on LSCM‐YSZ support layer and Ni‐ScSZ active layer. Thus, LSCM‐YSZ/Ni‐ScSZ anodes with Cu‐LSCM‐CeO2 catalyst layer (denoted as LSCM‐YSZ1010, LSCM‐YSZ2010, LSCM‐YSZ2510 and LSCM‐YSZ3010, respectively) are obtained. Single cells with three‐layer structure anode are also fabricated and measured, of which the maximum power density reaches 491 and 670 mW cm−2 for the cell with LSCM‐YSZ2510 anode running on methane at 750 °C and 800 °C, respectively. No significant degradation in performance has been observed after 240h of cell testing when LSCM‐YSZ2510 anode is exposed to methane at 750 °C. Very little carbon deposition is detected on the anode, suggesting that carbon deposition is limited during cell operation. Consequently, Cu‐LSCM‐CeO2 catalyst layer on the surface of LSCM‐YSZ support layer makes it possible to have good stability for long‐term operation in methane due to very little carbon deposition.  相似文献   

13.
A solid state electrochemical reactor is described in which reactants can be oxidised at high temperatures over an anode/catalyst using co-fed oxygen gas as well as electrochemically supplied oxygen. The setup permits injection of isotopic pulses in the reactant streams. The composition and isotopic distribution in the products are recorded with a quadrupole mass spectrometer. The use of the system is exemplified by oxidation of methane over a Au + SrFeO3?δ//YSZ anode at 800–850°C. Pulses of 18O2 in the stream of co-fed O2 were used to study the reactivity and products of gaseous oxygen as distinguished from the electrochemically supplied oxygen. The results indicate that the anode used supports oxygen pumping, but is only moderately active for methane oxidation. The products are mainly CO and CO2. The content of 18O in the products is low, indicating that methane oxidation takes place by 16O-rich lattice oxygen. In comparison, a reference Au//YSZ electrode was found to be a slower anode for oxygen pumping, but a better catalyst for the reaction between CH4 and gaseous O2, seemingly involving adsorbed oxygen.  相似文献   

14.
Nd1.95NiO4+δ (NNO) cathode supported microtubular cells were fabricated and characterized. This material presents superior oxygen transport properties in comparison with other commonly used cathode materials. The supporting tubes were fabricated by cold isostatic pressing (CIP) using NNO powders and corn starch as pore former. The electrolyte (GDC, gadolinia doped ceria based) was deposited by wet powder spraying (WPS) on top of pre‐sintered tubes and then co‐sintered. Finally, a NiO/GDC suspension was dip‐coated and sintered as the anode. Optimization of the cell fabrication process is shown. Power densities at 750 °C of ∼40 mWcm−2 at 0.5V were achieved. These results are the first electrochemical measurements reported using NNO cathode‐supported microtubular cells. Further developments of the fabrication process are needed for this type of cells in order to compete with the standard microtubular solid oxide fuel cells (SOFC).  相似文献   

15.
Direct internal reforming of methane (steam/carbon=0.031, 850 °C) is tested using button cells of Ni-YSZ/ YSZ/LSM in which the anode layer is supported either on Ni-YSZ or on Ni-CoAl2O4. The Ni-CoAl2O4 supported cell shows little degradation with operating time, as a result of higher resistance against carbon deposition, whereas the Ni-YSZ supported cell deactivates quickly and suffers fracture in 50 h. Upon incorporation of additives such as K, Ce, or Mo into the Ni-CoAl2O4 support, cells with 0.5 wt% CeO2 exhibit the best stable performance as a result of reduced coke formation. Cells with 0.5 wt% Mo exhibit the lowest performance. Although no carbon deposit is detected in the cells with K2CO3 additives, their performance is worse than that in the CeO2 case, and, in constant-current mode, there is a sudden voltage drop to zero after a certain period of time; this time becomes shorter with increasing K content. The injection of potassium into the anode side facilitates the generation of OH? and CO 3 2? in the anode and promotes the diffusion of these ions to the cathode. Increased polarization resistance at the cathode and increased electrolyte resistance result in such a sudden failure.  相似文献   

16.
Ni‐Co bimetallic and Ni or Co monometallic catalysts prepared for CO2 reforming of methane were tested with the stimulated biogas containing steam, CO2, CH4, H2, and CO. A mix of the prepared CO2 reforming catalyst and a commercial steam reforming catalyst was used in hopes of maximizing the CO2 conversion. Both CO2 reforming and steam reforming of CH4 occurred over the prepared Ni‐Co bimetallic and Ni or Co monometallic catalysts when the feed contained steam. However, CO2 reforming did not occur on the commercial steam reforming catalyst. There was a critical steam content limit above which the catalyst facilitated no more CO2 conversion but net CO2 production for steam reforming and water‐gas shift became the dominant reactions in the system. The Ni‐Co bimetallic catalyst can convert more than 70% of CO2 in a biogas feed that contains ~33 mol% of CH4, 21.5 mol% of CO2, 12 mol% of H2O, 3.5 mol% of H2, and 30 mol% of N2. The H2/CO ratio of the produced syngas was in the range of 1.8‐2. X‐ray absorption spectroscopy of the spent catalysts revealed that the metallic sites of Ni‐Co bimetallic, Ni and Co monometallic catalysts after the steam reforming of methane reaction with equimolar feed (CH4:H2O:N2 = 1:1:1) experienced severe oxidation, which led to the catalytic deactivation.  相似文献   

17.
G. Kaur  S. Basu 《Fuel Cells》2014,14(6):1006-1013
Electro‐catalytic activity of Cu–Co/CeO2–YSZ anodes towards oxidation of H2 and n‐C4H10 fuels and carbon depositions are investigated using different Cu–Co loadings. Cu–Co/CeO2–YSZ anode based SOFCs with YSZ as electrolyte and LSM/YSZ as cathode were prepared by tape casting and wet impregnation methods and performance was analyzed using IV characteristics and impedance spectroscopy. The Cu–Co/CeO2–YSZ anodes with Cu–Co loading of 10, 15, and 25 wt.% produced power density of 60, 197, and 400 mW cm–2 in H2 and 190, 225, and 275 mW cm–2 in n‐C4H10 at 800 °C. The power density is increased with the increase in Cu–Co loading in Cu–Co/CeO2–YSZ anodes. The electrochemical impedance spectra shows less ohmic and polarization resistance for 25 wt.% Cu–Co loading in comparison to 10 and 15 wt.% Cu–Co. Scanning electron microscopy and high resolution transmission electron microscopy shows that the carbon fibers formed are hollow in nature with 70 nm size, whereas, thermal gravimetric analysis and X‐ray diffraction points out that they are amorphous in nature. The performance degradation of Cu–Co/CeO2–YSZ anodes in n‐C4H10 in 16 h is attributed to increasing amount of carbon deposition with time, which is contrary to our earlier observation in Cu‐Fe/CeO2–YSZ anode.  相似文献   

18.
An electrochemical cell, Pd|YSZ|Pd, was constructed in order to remove both NO and CH4 in the presence of excess oxygen. When direct current was supplied to the cell with a flow of a mixture of NO, CH4, O2, H2O and CO2 at 700° C, NO was reduced to nitrogen at the cathode, and CH4 was oxidized to CO x at both the anode and cathode. At the cathode, the reduction of NO and the oxidation of CH4 proceeded with the removal of chemisorbed oxygen species from the Pd surface, and at the anode, the oxidation of CH4 was enhanced by forming an active oxygen atom.  相似文献   

19.
Resistance to coking is one of the most important characteristics of nickel catalysts used for steam reforming of hydrocarbons, CO2 reforming or methanation of carbon oxides. Microbalance reactors have for a long time played an important role in catalyst deactivation studies, providing coking and coke gasification rates. However, conventional thermogravimetric microbalances have a number of limitations. The aim of this paper is to compare initial temperatures of coking of Ni and Ni-Mo catalysts (with different resistance to coking) obtained in the temperature-programmed reaction of n-butane with steam with the results of coking rates obtained by the traditional thermogravimetric method. The investigations showed great agreement of the results.  相似文献   

20.
Hydrogen production was prepared via catalytic steam reforming of fast pyrolysis bio-oil in a two-stage fixed bed reactor system. Low-cost catalyst dolomite was chosen for the primary steam reforming of bio-oil in consideration of the unavoidable deactivation caused by direct contact of metal catalyst and bio-oil itself. Nickel-based catalyst Ni/MgO was used in the second stage to increase the purity and the yield of desirable gas product further. Influential parameters such as temperature, steam to carbon ratio (S/C, S/CH4), and material space velocity (WBHSV, GHSV) both for the first and the second reaction stages on gas product yield, carbon selectivity of gas product, CH4 conversion as well as purity of desirable gas product were investigated. High temperature (> 850 °C) and high S/C (> 12) are necessary for efficient conversion of bio-oil to desirable gas product in the first steam reforming stage. Low WBHSV favors the increase of any gas product yield at any selected temperature and the overall conversion of bio-oil to gas product increases accordingly. Nickel-based catalyst Ni/MgO is effective in purification stage and 100% conversion of CH4 can be obtained under the conditions of S/CH4 no less than 2 and temperature no less than 800 °C. Low GHSV favors the CH4 conversion and the maximum CH4 conversion 100%, desirable gas product purity 100%, and potential hydrogen yield 81.1% can be obtained at 800 °C provided that GHSV is no more than 3600 h− 1. Carbon deposition behaviors in one-stage reactor prove that the steam reforming of crude bio-oil in a two-stage fixed bed reaction system is necessary and significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号