首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A tubular segmented‐in‐series (SIS) solid oxide fuel cell (SOFC) sub module for intermediate temperature (700–800 °C) operation was fabricated and operated in this study. For this purpose, we fabricated porous ceramic supports of 3 YSZ through an extrusion process and analyzed the basic properties of the ceramic support, such as visible microstructure, porosity, and mechanical strength, respectively. After that, we fabricated a tubular SIS SOFC single cell by using dip coating and vacuum slurry coating method in the case of electrode and electrolyte, and obtained at 800 °C a performance of about 400 mW cm–2. To make a sub module for tubular SIS SOFC, ten tubular SIS SOFC single cells with an effective electrode area of 1.1 cm2 were coated onto the surface of the prepared ceramic support and were connected in series by using Ag + glass interconnect between each single cell. The ten‐cell sub module of tubular SIS SOFC showed in 3% humidified H2 and air at 800 °C a maximum power of ca. 390 mW cm–2.  相似文献   

2.
Y. Chen  F. Chen  D. Ding  J. Gao 《Fuel Cells》2011,11(3):451-458
The paper reports a new concept of planar‐tubular solid oxide fuel cell (PT‐SOFC). Emphasis is on the fabrication of the required complex configuration of Ni‐yttria‐stabilised zirconia (YSZ) porous anode support by tert‐butyl alcohol (TBA) based gelcasting, particularly the effects of solid loading, amounts of monomers and dispersant on the rheological behaviour of suspension, the shrinkage of a wet gelcast green body upon drying, and the properties of final sample after sintering at 1350 °C and reduction from NiO‐YSZ to Ni‐YSZ. The results show that the gelcasting is a powerful method for preparation of the required complex configuration anode support. The anode support resulted from an optimised suspension with the solid loading of 25 vol% has uniform microstructure with 37% porosity, bending strength of 44 MPa and conductivity of 300 S cm—1 at 700 °C, meeting the requirements for an anode support of SOFC. Based on the as‐prepared anode support, PT‐SOFC single cell of Ni‐YSZ/YSZ/LSCF has been fabricated by slurry coating and co‐sintering technique. The cell peak power density reaches 63, 106 and 141 mW cm—2 at 700, 750 and 800 °C, respectively, using hydrogen as fuel and ambient air as oxidant.  相似文献   

3.
C. Fu  X. Ge  S. H. Chan  Q. Liu 《Fuel Cells》2012,12(3):450-456
Large‐size, 9.5 cm × 9.5 cm, Ni‐Gd0.1Ce0.9O1.95 (Ni‐GDC) anode‐supported solid oxide fuel cell (SOFC) has been successfully fabricated with NiO‐GDC anode substrate prepared by tape casting method and thin‐film GDC electrolyte fabricated by screen‐printing method. Influence of the sintering shrinkage behavior of NiO‐GDC anode substrate on the densification of thin GDC electrolyte film and on the flatness of the co‐sintered electrolyte/anode bi‐layer was studied. The increase in the pore‐former content in the anode substrate improved the densification of GDC electrolyte film. Pre‐sintering temperature of the anode substrate was optimized to obtain a homogeneous electrolyte film, significantly reducing the mismatch between the electrolyte and anode substrate and improving the electrolyte quality. Dense GDC electrolyte film and flat electrolyte/anode bi‐layer can be fabricated by adding 10 wt.% of pore‐former into the composite anode and pre‐sintering it at 1,100 °C for 2 h. Composite cathode, La0.6Sr0.4Fe0.8Co0.2O3, and GDC (LSCF‐GDC), was screen‐printed on the as‐prepared electrolyte surface and sintered to form a complete single cell. The maximum power density of the single cell reached 497 mW cm–2 at 600 °C and 953 mW cm–2 at 650 °C with hydrogen as fuel and air as oxidant.  相似文献   

4.
For investigating the direct applicability of highly active cobalt containing cathodes on YSZ electrolytes at a lower processing and operating temperature range (T ≤ 650 °C), we fabricated a thin film lanthanum strontium cobalt oxide (LSC) cathode on an yttria stabilised zirconia (YSZ)‐based solid oxide fuel cell (SOFC) via pulsed laser deposition (PLD). Its electrochemical performance (5.9 mW cm–2 at 0.7 V, 650 °C) was significantly inferior to that (595 mW cm–2 at 0.7 V, 650 °C) of an SOFC with a thin (t ∼ 200 nm) gadolinium doped ceria (GDC) buffer layer in between the LSC thin film cathode and the YSZ electrolyte. It implies that even though the cathode processing and cell operating temperatures were strictly controlled not to exceed 650 °C, the direct application of LSC on YSZ should be avoided. The origin of the cell performance deterioration is thoroughly studied by glancing angle X‐ray diffraction (GAXRD) and transmission electron microscopy (TEM), and the decomposition of the cathode and diffusion of La and Sr into YSZ were observed when LSC directly contacted YSZ.  相似文献   

5.
This contribution describes the development of tape casting for solid oxide fuel cells (SOFCs) anode supports starting with the characterization of the powders and ending with manufacturing of cells for stack testing. After casting the support, full cells were prepared by screen printing and sintering of the functional layers. The results of single‐cell and stack tests of the novel SOFC will be discussed. The new cell showed excellent electrochemical performance in single‐cell tests with more than 1.5 A/cm2 (800°C, 0.7 V). Furthermore, stack tests showed no significant difference from earlier standard cells when operated at 800°C with a current density of 0.5 A/cm2.  相似文献   

6.
A co‐extrusion technique was employed to fabricate a novel dual layer NiO/NiO‐YSZ hollow fiber (HF) precursor which was then co‐sintered at 1,400 °C and reduced at 700 °C to form, respectively, a meshed porous inner Ni current collector and outer Ni‐YSZ anode layers for SOFC applications. The inner thin and highly porous “mesh‐like” pure Ni layer of approximately 50 μm in thickness functions as a current collector in micro‐tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni‐YSZ layer of 260 μm acts as an anode, providing also major mechanical strength to the dual‐layer HF. Achieved morphology consisted of short finger‐like voids originating from the inner lumen of the HF, and a sponge‐like structure filling most of the Ni‐YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 × 105 S m–1. This result is significantly higher than previous reported results on single layer Ni‐YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual‐layer HF design as a new and highly efficient way of collecting current from the lumen of micro‐tubular SOFC.  相似文献   

7.
Micro‐tubular solid oxide fuel cells (SOFCs) have high thermal stability and higher volumetric power density, which are considered to be ideal features for portable power sources and auxiliary power units for automobile. Here, we report a new stack design using anode supported micro‐tubular SOFCs with 2 mm diameter using Gd doped CeO2 (GDC) electrolyte, NiO‐GDC anode and (La, Sr)(Co, Fe)O3 (LSCF)‐GDC cathode. The new stack consists of three bundles with five tubular cells, sealing layers and interconnects and fuel manifolds. The performance of the stack whose volume is 1 cm3 was shown to be 2.8 V OCV and maximum power output of 1.5 W at 500 °C, applying air only by natural convection. The results also showed strong dependence of the fuel flow rates on the stack performance, which was correlated to the gas diffusion limitation.  相似文献   

8.
A new proton conducting fuel cell design based on the BZCYYb electrolyte is studied in this research. In high‐performance YSZ‐based SOFCs, the Ni‐YSZ support plays a key role in providing required electrical properties and robust mechanical behavior. In this study, this well‐established Ni‐YSZ support is used to maintain the proton conducting fuel cell integrity. The cell is in a Ni‐YSZ (375 μm support)/Ni‐BZCYYb (20 μm anode functional layer)/BZCYYb (10 μm electrolyte)/LSCF‐BZCYYb (25 μm cathode) configuration. Maximum power density values of 166, 218, and 285 mW/cm2 have been obtained at 600°C, 650°C, and 700°C, respectively. AC impedance spectroscopy results show values of 2.17, 1.23, and 0.76 Ω·cm2 at these temperatures where the main resistance contributor above 600°C is ohmic resistance. Very fine NiO and YSZ powders were used to achieve a suitable sintering shrinkage which can enhance the electrolyte sintering. During cosintering of the support and BZCYYb electrolyte layers, the higher shrinkage of the support layer led to compressive stress in the electrolyte, thereby enhancing its densification. The promising results of the current study show that a new generation of proton conducting fuel cells based on the chemically and mechanically robust Ni‐YSZ support can be developed which can improve long‐term performance and reduce fabrication costs of proton conducting fuel cells.  相似文献   

9.
In this study, the performances of single micro‐tubular solid oxide fuel cells based on the NiO–YSZ/YSZ/LSM system with two different current‐collection architectures were compared. In the first case, a straight Ni wire was inserted within the hole of the cell before the electrochemical testing, and in the second case, a coil integrated‐current collector within the anode layer was already arranged for electrical connections during cell processing. The current produced in each case was collected from double terminal and the performance of the cells was estimated by electrochemical IV characterization. The maximum power outputs generated in the cells with the integrated‐current collector and the common current‐collection architectures were of ∼200 and ∼55 mW cm–2, respectively at 800 °C under a wet H2 fuel flow.  相似文献   

10.
We fabricated anode-supported solid oxide fuel cells using decalcomania paper. To investigate the changes in thickness of the component layer and electrical properties in a unit cell, the number of layers of cathodes and the electrolyte decalcomania paper is changed. As a result, the thickness of the electrolyte and cathode layer regularly increases with an increase in the number of decalcomania papers attached. In addition, when only one electrolyte decalcomania paper is attached to an anode support, a tight and dense 8 μm electrolyte layer is obtained. A unit cell with a cathode thickness of 120 μm to which decalcomania paper is attached nine times is shown to have an open circuit voltage (OCV) of 1.08 V and a maximum power density (MPD) of 902 mW cm?2 at 800 °C.  相似文献   

11.
A novel design of single chamber solid oxide fuel cell (SC‐SOFC) microstack with cell‐array arrangement is fabricated and operated successfully in a methane–oxygen–nitrogen mixture. The small stack, consisting of five anode‐supported single cells connected in series, exhibits an open circuit voltage (OCV) of 4.74 V at the furnace temperature of 600 °C and a maximum power output of 420 mW (total active electrode area is 1.4 cm2) at the furnace temperature of 700 °C. A gas mixture of CH4/O2 = 1 leads to best performance and stability.  相似文献   

12.
Flow‐through type tubular solid oxide fuel cells were successfully fabricated and operated with a single‐chamber configuration for realizing the simultaneous generation of electric power and synthesis gas from methane by integrating a downstream catalyst into the fuel cell reactor. A new operation mode, which completely eliminated the gas diffusion between cathode side and anode side, is proposed. The cell showed high open‐circuit voltages of 1.02–1.08 V at the furnace temperature range of 650–800°C when operating on CH4‐O2 gas mixture at a molar ratio of 2:1. A peak power density of approximately 300 mW cm?2 and a maximum power output of 1.5 W were achieved for a single cell with an effective cathode geometric surface area of 5.4 cm2 at the furnace temperature of 750°C. The in‐situ initialization of the cell using CH4‐O2 gas mixture was also realized via applying an effective catalyst into the tubular cell. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1036–1044, 2014  相似文献   

13.
A novel tubular cathode for the direct methanol fuel cell (DMFC) is proposed, based on a tubular titanium mesh. A dip‐coating method has been developed for its fabrication. The tubular cathode is composed of titanium mesh, a cathode diffusion layer, a catalyst layer, and a recast Nafion® film. The titanium mesh is present at the inner circumference of the diffusion layer, while the recast Nafion® film is at the outer circumference of the catalyst layer. A DMFC single cell with a 3.5 mgPt cm–2 tubular cathode was able to perform as well, in terms of power density, as a conventional planar DMFC. A peak power density of 9 mW cm–2 was reached under atmospheric air at 25 °C.  相似文献   

14.
A platinum/alumina catalyst was sintered in oxygen and hydrogen atmospheres using two metal loadings of the catalyst: 0.3% Pt and 0.6% Pt. After sintering, the aromatization selectivity was investigated with the reforming of n‐heptane as the model reaction at a temperature of 500 °C and a pressure of 391.8 kPa. The primary products of n‐heptane reforming on the fresh platinum catalysts were methane and toluene, with subsequent conversion of benzene from toluene demethylation. To induce sintering, the catalysts were treated with oxygen at a flow rate of 60 mL min?1, pressure of 195.9 kPa and temperatures between 500 and 800 °C. The 0.3% Pt/Al2O3 catalyst exhibited enhanced aromatization selectivity at various sintering temperatures while the 0.6% Pt/Al2O3 catalyst was inherently hydrogenolytic. The fact that aromatization was absent on the 0.6% Pt/Al2O3 catalyst was attributed to the presence of surface structures with dimensionality between two and three as opposed to essentially 2‐D structures on the 0.3% Pt/Al2O3 catalyst surface. On the 0.3% Pt/Al2O3 catalyst, the reaction product ranged from only toluene at a 500 °C sintering temperature to predominantly cracked product at a sintering temperature of 650 °C and no reaction at 800 °C. For sintering at about 650 °C, subsequent conversion of n‐heptane was complete and dropped thereafter. The turnover number was observed to change from 0.07 to 2.26 s?1 as the dispersion changed from 0.33 to 0.09. The Koros–Nowark (K–N) test was used to check for the presence of internal diffusional incursions and Boudart's criterion was used for structural sensitivity determination. The K–N test indicated the absence of diffusional resistances while n‐heptane reforming was found to be structure sensitive on the Pt/Al2O3 catalyst. Copyright © 2006 Society of Chemical Industry  相似文献   

15.
F. Zhang  Z. Yang  H. Wang  W. Wang  G. Ma 《Fuel Cells》2012,12(5):749-753
A series of cobalt‐free perovskite‐type cathode materials La0.6Sr0.4Fe1–xNixO3–δ (0 ≤ x ≤ 0.15) for intermediate temperature solid oxide fuel cells (IT‐SOFCs) are prepared by a citric‐nitrate process. The conductivities of the cathode materials are measured as functions of temperature (300–800 °C) in air by AC impedance method, and the La0.6Sr0.4Fe0.9Ni0.1O3–δ (LSFN10) has the highest conductivity to be 160 S cm–1 at 400 °C. A single IT‐SOFC based on LSFN10 cathode, BaZr0.1Ce0.7Y0.2O3–δ electrolyte membrane and Ni–BaZr0.1Ce0.7Y0.2O3–δ anode substrate was fabricated by a simple spin‐coating process, and the performances of the cell using hydrogen as fuel and air as the oxidant were researched by electrochemical methods at 600–700 °C. The maximum power densities of the cell are 405 mW cm–2 at 700 °C, 238 mW cm–2 at 650 °C, and 140 mW cm–2 at 600 °C, respectively. The results indicate that the LSFN10 is a promising cathode material for proton conducting IT‐SOFCs.  相似文献   

16.
An efficient oxidation catalyst was developed to increase the combustion efficiency of unreacted CO, H2, and CH4 in flue gas of solid oxide fuel cell (SOFC) stack. Amorphous Cu‐Mn oxide catalyst (CuMnLa/Alumina) showed high catalytic activity, but significant degradation occurred due to phase transition to spinel structure at high temperatures (T > 650°C). La0.8Sr0.2Mn0.67Cu0.33O3 perovskite (LSMC(p)) supported CuO or Mn2O3 exhibited improved thermal stability than CuMnLa/Alumina catalyst. Especially in case of 50Mn/LSMC(p), after the catalyst was exposed to 800°C for 24 h, T50 of CO, H2 and CH4 was achieved at 170, 230, and 600°C, respectively. This result is much lower than that of CuMnLa/Alumina, which was exposed to the same condition. The high combustion efficiency is due to retention of the Cu2+‐Mn3+ redox couple, and supply of lattice oxygen from LSMC(p), especially at high temperature. © 2017 American Institute of Chemical Engineers AIChE J, 64: 940–949, 2018  相似文献   

17.
Two types of micro‐tubular hollow fiber SOFCs (MT‐HF‐SOFCs) were prepared using phase inversion and sintering; electrolyte‐supported, based on highly asymmetric Ce0.9Gd0.1O1.95(CGO) HFs and anode‐supported based on co‐extruded NiO‐CGO(CGO)/CGO HFs. Electroless plating was used to deposit Ni onto the inner surfaces of the electrolyte‐supported MT‐HF‐SOFCs to form Ni‐CGO anodes. LSCF‐CGO cathodes were deposited on the outer surface of both these MT‐HF‐SOFCs before their electrochemical performances were compared at similar operating conditions. The performance of the anode‐supported MT‐HF‐SOFCs which delivered ca. 480 mW cm–2 at 600 °C was superior to the electrolyte‐supported MT‐HF‐SOFCs which delivered ca. six times lower power. The contribution of ohmic and electrode polarization losses of both FCs was investigated using electrochemical impedance spectroscopy. The electrolyte‐supported MT‐HF‐SOFCs had significantly higher ohmic and electrode polarization ASR values; this has been attributed to the thicker electrolyte and the difficulties associated with forming quality anodes inside the small (<1 mm) lumen of the electrolyte tubes. Further development on co‐extruded anode‐supported MT‐HF‐SOFCs led to the fabrication of a thinner electrolyte layer and improved electrode microstructures which delivered a world leading 2,400 mW cm–2. The newly made cell was investigated at different H2 flow rates and the effect of fuel utilization on current densities was analyzed.  相似文献   

18.
BACKGROUND: The metal dispersed over a support can be present as small crystallites with sizes less than 5 nm. The smaller crystallites favour aromatization while larger crystallites favour cracking/hydrogenolysis. Sintering results in the agglomerization of smaller metal crystallites. Correlation of size with aromatization selectivity was investigated. RESULTS: The primary products of n‐heptane reforming on fresh Pt were methane, toluene, and benzene, while on fresh Pt‐Re, the only product was methane. Both catalysts exhibited enhanced aromatization selectivity at different oxygen sintering temperatures. The reaction products ranged from only toluene at 500 °C sintering temperature to methane at a sintering temperature of 650 °C with no reaction at 800 °C for the Pt/Al2O3 catalyst. On Pt‐Re/Al2O3 catalyst, methane was the sole product at a sintering temperature of 500 °C while only toluene was produced at a sintering temperature of 800 °C. CONCLUSION: This is the first time that sintering has been used to facilitate aromatization of supported Pt and Pt‐Re catalysts. A superior selectivity behaviour associated with bi‐metallic Pt catalysts is established. It was found that no reaction occurred on Pt catalyst after sintering at 800 °C whereas sintering Pt‐Re at 800 °C promoted aromatization solely to toluene. Copyright © 2008 Society of Chemical Industry  相似文献   

19.
Metal‐supported solid oxide fuel cells are expected to offer several potential advantages over conventional anode (Ni‐YSZ) supported cells. For example, increased resistance against mechanical and thermal stresses and a reduction in material costs. When Ni‐YSZ based anodes are used in metal supported SOFC, elements from the active anode layer may inter‐diffuse with the metallic support during sintering. This work illustrates how the inter‐diffusion problem can be circumvented by using an alternative anode design based on porous and electronically conducting layers, into which electrocatalytically active materials are infiltrated after sintering. The paper presents the electrochemical performance and durability of the novel planar metal‐supported SOFC design. The electrode performance on symmetrical cells has also been evaluated. The novel cell and anode design shows a promising performance and durability at a broad range of temperatures and is especially suitable for intermediate temperature operation at around 650 °C.  相似文献   

20.
We present single‐step‐co‐sintering manufacture of a planar single‐chamber solid oxide fuel cell (SC‐SOFC) with porous multilayer structures consisting of NiO/CGO, CGO and CGO‐LSCF as anode, electrolyte, and cathode, respectively. Their green tapes were casted with 20 μm thickness and stacked into layers of anode, electrolyte, and cathode (10:2:2), then hot‐pressed at 2 MPa and 60°C for 5 minutes (deemed optimal). Subsequently, hot laminated layers were cut into 40 × 40 mm cells and co‐sintered up to 1200°C via different sintering profiles. Shrinkage behavior and curvature developments of cells were characterized, determining the best sintering profile. Hence, anode‐supported SC‐SOFCs were fabricated via a single‐step co‐sintering process, albeit with curvature formation at edges. Subsequently, anode thickness was increased to 800 μm and electrolyte reduced to 20 μm to obtain SOFCs with drastically reduced curvature with the help of a porous alumina cover plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号