首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A proton conducting ceramic fuel cell (PCFC) operating at intermediate temperature has been developed that incorporates electrolyte and electrode materials prepared by flash combustion (yttrium‐doped barium cerate) and auto‐ignition (praseodymium nickelate) methods. The fuel cell components were assembled using an anode‐support approach, with the anode and proton ceramic layers prepared by co‐pressing and co‐firing, and subsequent deposition of the cathode by screen‐printing onto the proton ceramic surface. When the fuel cell was fed with moist hydrogen and air, a high Open Circuit Voltage (OCV > 1.1 V) was observed at T > 550 °C, which was stable for 300 h (end of test), indicating excellent gas‐tightness of the proton ceramic layer. The power density of the fuel cell increased with temperature of operation, providing more than 130 mW cm–2 at 650 °C. Symmetric cells incorporating Ni‐BCY10 cermet and BCY10 electrolyte on the one hand, and Pr2NiO4 + δ and BCY10 electrolyte on the other hand, were also characterised and area specific resistances of 0.06 Ω cm2 for the anode material and 1–2 Ω cm2 for the cathode material were obtained at 600 °C.  相似文献   

2.
S. Li  H. Tu  L. Yu  M. T. Anwar 《Fuel Cells》2016,16(6):822-828
A novel fabrication process for solid oxide fuel cells (SOFCs) with La0.2Sr0.7TiO3–δ (LSTA–) as anode support and La2NiO4+δ (LNO) as cathode material, which avoids complicated impregnation process, is designed and investigated. The LSTA– anode‐supported half cells are reduced at 1,200 °C in hydrogen atmosphere. Subsequently, the LNO cathode is sintered on the YSZ electrolyte at 1,200 °C in nitrogen atmosphere and then annealed in situ at 850 °C in air. The results of XRD analysis and electrical conductivity measurement indicate that the structure and electrochemical characteristics of LNO appear similar before and after the sintering processes of the cathode. By using La0.6Sr0.4CoO3–δ (LSC) as current collector, the cell with LNO cathode sintered in nitrogen atmosphere exhibits the power density at 0.7 V of 235 mW cm−2 at 800 °C. The ohmic resistance (RS) and polarization resistance (RP) are 0.373 and 0.452 Ω cm2, respectively. Compared to that of the cell with the LNO cathode sintered in air, the sintering processes of the cell with the LNO cathode sintered in nitrogen atmosphere can result in better electrochemical performance of the cell mainly due to the decrease in RS. The microstructures of the cells reveal a good adhesion between each layer.  相似文献   

3.
Y. Zheng  T. Chen  Q. Li  W. Wu  H. Miao  C. Xu  W. G. Wang 《Fuel Cells》2014,14(6):1066-1070
A 30‐cell solid oxide electrolysis (SOE) stack consisting of 30‐cell planar Ni–YSZ hydrogen electrode‐supported single cell with La0.6Sr0.4Co0.2Fe0.8O3–δ–Ce0.9Gd0.1O1.95 (LSCF–GDC) composite oxygen electrodes, interconnects, and sealing materials was tested at 750 °C in steam electrolysis mode for hydrogen production. The direction of gas flow in the stack was a cross‐flow configuration, and the stack configuration was designed to open gas flow channels at the air outlet. The electrolysis efficiency of the stack was higher than 100% at 90/10H2O/H2 ratio under <0.5 A cm−2 current density. During hydrogen production, the stack was operated at 750 °C under 0.5 A cm−2 constant current density for more than 500 h with 4.06% k h−1 degradation rate. Up to 73% steam conversion rate and 91.6% current efficiency were obtained; the net hydrogen production rate reached as high as 361.4 NL h−1. Our results suggested that the SOE stack that was designed with LSCF–GDC composite oxygen electrode could be used to conduct large‐scale hydrogen production.  相似文献   

4.
This paper describes Sr0.8La0.2TiO3 (SLT)‐supported solid oxide fuel cells with a thin (La0.9Sr0.1)0.98Ga0.8Mg0.2O3–δ (LSGM) electrolyte and porous LSGM anode functional layer (AFL). Optimized processing for the SLT support bisque firing, LSGM electrolyte layer co‐firing, and LSGM AFL colloidal composition is presented. Cells without a functional layer yielded a power density of 228 mW cm–2 at 650 °C, while cells with a porous LSGM functional layer yielded a power density of 434 mW cm–2 at 650 °C. Cells with an AFL yielded a higher open circuit voltage, possibly due to reduced Ti diffusion into the electrolyte. Infiltration produced Ni nanoparticles within the support and AFL, which proved crucial for the electrochemical activity of the anode. Power densities increased with increasing Ni loadings, reaching 514 mW cm–2 at 650 °C for 5.1 vol.% Ni loading. Electrochemical impedance spectroscopy analysis indicated that the cell resistance was dominated by the cathode and electrolyte resistance with the anode resistance being relatively small.  相似文献   

5.
《Ceramics International》2020,46(12):19952-19959
Protonic ceramic fuel cells (PCFCs) show great potential in terms of lowering the operation temperature and overall cost of solid oxide fuel cells based on the high ionic conductivity and low activation energy of proton-conducting electrolytes in intermediate or low temperature environments. However, a significant reduction in anode activity with decreasing temperature hinders the broad application of PCFCs. In this study, a novel anode material Ni–Ba0.96(Ce0.66Zr0.1Y0.2Ni0.04)O3-δ (Ni-BCZNY) with in-situ exsolved Ni nanoparticles is developed. This material exhibits extremely high activity in PCFCs in intermediate and low temperatures. A cell fabricated with this anode material achieves a power density of 912 mW cm−2 and polarization resistance of 0.04 Ω cm2 in wet H2/air at 700 °C. Additionally, the microstructure, electrochemical performance, electrochemical impedance, and electrode processes of a Ni-BCZNY cell are analyzed in detail. The results indicate that performance enhancements can be attributed to the Ni nanoparticle exsolution promoting charge transfer and hydrogen dissociative adsorption.  相似文献   

6.
《Ceramics International》2019,45(16):20066-20072
Recently, powder injection molding (PIM) has been exploited in the field of solid oxide fuel cells (SOFCs), especially for fabricating anode supports. The current study employs low pressure injection molding (LPIM) to manufacture near net shape, porous, tubular NiO-yttria stabilized zirconia (YSZ) anode supports for anode-supported SOFCs. The study investigates the effects of pre-calcining temperature of the ceramic powder on the microstructure, porosity and electrochemical performance of the cells in detail. Archimedes tests reveal that the porosity of an unreduced NiO-YSZ anode with 900 °C pre-calcined powder reaches a high of 25.9%, approaching the optimal value of 26%. Meanwhile, the anode prepared under this condition possesses more porous and homogeneous microstructures. At 800 °C, with humidified hydrogen as fuel and ambient air as the oxidant, the single cell with 900 °C pre-calcined powder delivers a maximum power density of 671 mW cm−2 while the cell with raw powder, 555 mW cm−2, and the cell with 1000 °C pre-calcined powder, 648 mW cm−2. A four-cell stack is assembled by connecting four single cells in series. The stack could provide a maximum output power of 4.6 W and an open circuit voltage of 3.2 V when fuelled with humidified hydrogen at 800 °C.  相似文献   

7.
This work investigates the effect of contact between electrodes and alloy interconnects on output performance of solid oxide fuel cell (SOFC) stacks. The measured maximum output power density (pmax) of the unit cell increases from 0.07 to 0.1 W cm–2 by increasing the tip area of the interconnect from 40 to 60 cm2. The pmax increases from 0.07 to 0.15 W cm–2 upon the addition of nickel foam and Ag mesh on the anode and cathode side, respectively. An additional (La0.75Sr0.25)0.95MO3–σ cathode current collecting layer is re‐printed on the original cathode current collecting layer, which aims to further improve the performance of the stack and individual cell. The performance of a 3‐cell short stack assembled by the cells with a new cathode current collecting layer is evaluated by measuring the current–voltage curve. The results indicate that the pmax values of the stack and individual cells are enhanced from 0.07 to 0.37 W cm–2 and 0.15 to 0.5 W cm–2 at 850 °C, respectively. The performance of the whole stack and individual cells is greatly improved due to the interconnect embedded in the re‐printed new cathode current collecting layer.  相似文献   

8.
We constructed a fuel‐flexible fuel cell consisting of an alkaline anion exchange membrane, palladium anode, and platinum cathode. When an alcohol fuel was used with potassium hydroxide added to the fuel stream and oxygen was the oxidant, the following maximum power densities were achieved at 60 °C: ethanol (128 mW cm−2), 1‐propanol (101 mW cm−2), 2‐propanol (40 mW cm−2), ethylene glycol (117 mW cm−2), glycerol (78 mW cm−2), and propylene glycol (75 mW cm−2). We also observed a maximum power density of 302 mW cm−2 when potassium formate was used as the fuel under the same conditions. However, when potassium hydroxide was removed from the fuel stream, the maximum power density with ethanol decreased to 9 mW cm−2 (using oxygen as oxidant), while with formate it only decreased to 120 mW cm−2 (using air as the oxidant). Variations in the performance of each fuel are discussed. This fuel‐flexible fuel cell configuration is promising for a number of alcohol fuels. It is especially promising with potassium formate, since it does not require hydroxide added to the fuel stream for efficient operation.  相似文献   

9.
Novel high permeable porous Ni‐Mo substrates with different area densities of straight gas flow channels are successfully developed to improve the hydrogen fuel gas and the water byproduct diffusion in the anode and supporting substrate. Metal‐supported cell A, cell B and cell C with 5 × 5 cm2 supporting substrates are fabricated by atmospheric plasma spraying processes, these cells have the material structure of Ni‐Mo/LSCM (La0.75Sr0.25Cr0.5‐Mn0.5O3–δ)/NiO‐LDC(Ce0.55La0.45O2–δ)/SDC(Sm0.15Ce0.85O3–δ)/LSGM (La0.8Sr0.2Ga0.8Mg0.2O3–δ)/SSC(Sm0.5Sr0.5CoO3–δ). Cell A is supported by a conventional porous Ni‐Mo substrate without straight gas flow channels, cell B and cell C are supported respectively by the novel high permeable porous Ni‐Mo substrates with 1.5 and 2.73 channels per square centimeter. The power densities at 0.8 V and 750 °C are 550, 998 and 1,161 mW cm−2 for cell A, cell B and cell C respectively. The 100 h durability test at the constant current density of 400 mA cm−2 and 650 °C shows cell B and cell C have smaller degradation rates than cell A. The results obtained from AC impedance and circuit model analyses indicate that the electrolyte ohm and the cathode polarization resistances are significantly reduced by introducing straight gas flow channels into the supporting substrate.  相似文献   

10.
H. Shi  Z. Ding  G. Ma 《Fuel Cells》2016,16(2):258-262
A new series of cobalt‐free perovskite‐type oxides, Nd0.5Ba0.5Fe1–xNixO3–δ (0 ≤ x ≤ 0.15), have been prepared by a citric acid‐nitrate process and investigated as cathode materials for proton conducting intermediate temperature solid oxide fuel cells (IT‐SOFCs). The conductivity of the oxides was measured at 300–800 °C in air. It is discovered that partial substitution of Ni for Fe‐sites in Nd0.5Ba0.5Fe1–xNixO3–δ obviously enhances the conductivity of the oxides. Among the series of oxides, the Nd0.5Ba0.5Fe0.9Ni0.1O3–δ (NBFNi10) exhibits the highest conductivity of 140 S cm−1 in air at 550 °C. A single H2/air fuel cell with proton‐conducting BaZr0.1Ce0.7Y0.2O3–δ (BZCY) electrolyte membrane (ca. 40 μm thickness) and NBFNi10‐BZCY composite cathode and NiO‐BZCY composite anode was fabricated and tested at 600–700 °C. The peak power density and the interfacial polarization resistance (Rp) of the cell are 490 mW cm−2 and 0.15 Ω cm2 at 700 °C, respectively. The experimental results indicate that NBFNi10 is a promising cathode material for the proton‐conducting IT‐SOFCs.  相似文献   

11.
The conventional solid oxide cell is based on a Ni–YSZ support layer, placed on the fuel side of the cell, also known as the anode supported SOFC. An alternative design, based on a support of porous 3YSZ (3 mol.% Y2O3–doped ZrO2), placed on the oxygen electrode side of the cell, is proposed. Electronic conductivity in the 3YSZ support is obtained post sintering by infiltrating LSC (La0.6Sr0.4Co1.05O3). The potential advantages of the proposed design is a strong cell, due to the base of a strong ceramic material (3YSZ is a partially stabilized zirconia), and that the LSC infiltration of the support can be done simultaneously with forming the oxygen electrode, since some of the best performing oxygen electrodes are based on infiltrated LSC. The potential of the proposed structure was investigated by testing the mechanical and electrical properties of the support layer. Comparable strength properties to the conventional Ni/YSZ support were seen, and sufficient and fairly stable conductivity of LSC infiltrated 3YSZ was observed. The conductivity of 8–15 S cm–1 at 850 °C seen for over 600 h, corresponds to a serial resistance of less than 3.5 m Ω cm2 of a 300 μm thick support layer.  相似文献   

12.
A formulation of tungsten and nickel combined with CeO2 (WNi‐Ce) was prepared and evaluated as sulfur‐tolerant anode for SOFC at intermediate temperature. Structural and morphological changes that take place in the system upon interactions with hydrogen sulfide were analyzed. The electrochemical performance was tested in a single cell, WNi‐Ce/LDC/LSGM/LSFC, varying H2S concentration (0–500 ppm) at 750 °C using I–V curves, impedance spectroscopy and load demands. The highest cell performance was reached in H2 and decrease with H2S content increase in the fuel from 226 mW cm−2 in pure H2 to 108 mW cm−2 in 500 ppm H2S/H2. Essentially, no decay in the cell performance was observed in the several short‐term load tests studied under several H2S concentration (0–500 ppm) during 1h, and even in 500 ppm H2S/H2 during 70 h, indicating that this material could be a potential sulfur‐tolerant anode.  相似文献   

13.
Nafion® membrane blended with polyacrylonitrile nanofibers decorated with ZrO2 was successfully fabricated. The composite membrane showed improved proton conductivity, swelling ratio, thermal and mechanical stability, reduced methanol crossover, and enhanced fuel cell efficiency. The nanocomposite membranes achieved a reduced methanol crossover of 5.465 × 10−8 cm2 S−1 compared to 9.118 × 10−7 cm2 S−1 of recast Nafion® membrane using a 5 M methanol solution at 80°C. The composite membrane also showed an ion conductivity of 1.84 compared to 0.25 S cm−1 recast Nafion® at 25°C. The composite membranes showed a peak power density of 68.7 mW·cm−2 at 25°C, these results show a promising composite membrane for fuel cell application.  相似文献   

14.
Silylated poly(4-hydroxystyrene)s and radical polymerized 4-tert-butyldimethylsilyloxystyrene (TBDMSOSt) were examined as electron beam resists. Commercial poly(4-hydroxystyrene) (PHS) with Mw = 1.69 × 104 and Mw/Mn = 5.41 was silylated with 1-(trimethylsilyl)imidazole and tert-butylchlorodimethylsilane. Both silylation reactions proceeded quantitatively to afford trimethylsilylated PHS with Mw = 3.93 × 104 and Mw/Mn = 4.91, and tert-butyldimethylsilylated PHS with Mw = 4.08 × 104 and Mw/Mn = 3.81. These 2 silyl ether polymers acted as a negative working resist to electron beam (EB) exposure. Sensitivity and contrast of tert- butyldimethylsilylated PHS were not affected by prebake temperature around its Tg of 97°C, while those of PHS were dependent on prebake temperature around its Tg of 160°C. At a prebake temperature of 125°C, the sensitivity parameter and the contrast γ value were obtained as follows: 3.93 × 10−4 C cm−2 and 0.91 for PHS; 1.49 × 10−4 C cm−2 and 1.06 for trimethylsilylated PHS; 1.84 × 10−4 C cm−2 and 1.44 for tert-butyldimethylsilylated PHS. The silylation procedures obviously improved the sensitivity of PHS. TBDMSOSt was polymerized in bulk at 60°C with 2,2′-azobisisobutyronitrile (AIBN) as an initiator. The resultant poly(TBDMSOSt) possessed Mw = 3.01 × 105 and Mw/Mn = 1.92 and exhibited a sensitivity of 1.60 × 10−5 C cm−2 and a γ value of 1.47. More than 10 times enhancement of sensitivity was observed compared with tert-butyldimethylsilylated PHS. Such a high sensitivity is probably due to the high molecular weight of the bulk polymerized material. Poly(TBDMSOSt) resolved an isolated line of 0.20 μm width and 0.5 μm line and space patterns. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 1151–1157, 1998  相似文献   

15.
Reversible protonic ceramic cells (R-PCCs) are efficient energy storage and conversion devices that can operate in two modes, namely, in the fuel cell mode for the conversion of fuel to electricity, and in the electrolysis (EC) mode for the EC of water into hydrogen and oxygen. Fuel electrode is a critical component of fuel-electrode-supported R-PCCs, and its pore structure directly affects the electrochemical performance of the R-PCCs, but it has not been fully studied yet. Herein, the pore structure of Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3−δ (Ni–BZCYYb) fuel electrodes was systematically modulated by varying the weight ratio (0, 5, 10, and 15 wt.%) of the pore-former added to Ni–BZCYYb, and the electrochemical performance characteristics in the fuel cell and EC modes were investigated. The cell with 10 wt.% pore-former in the Ni–BZCYYb electrode achieved a remarkable peak power density of 540.7 mW cm−2 and a high current density of –2.28 A cm−2 at 1.3 V at 700°C in the fuel cell and EC modes, respectively, and showing excellent durability for over 100 h. These results further highlight the critical role of the microstructure of fuel electrodes, which can be modified to achieve exceptional performance, particularly in EC operations.  相似文献   

16.
A single-chamber solid oxide fuel cell made of Ni/YSZ anodes, YSZ electrolytes and SDC-impregnated LSM cathodes was tested in methane–oxygen mixture at furnace temperature equal to 700 °C. Two Ag wires were arranged on the anode surface to in situ measure the changes of the local anode resistance (Rs) during testing. Oscillations of the Rs, the cell voltage and the actual temperature of the cell were observed and attributed to Ni/NiO redox cycles. Steady-state tests of the cell showed the corresponding oscillation patterns mainly depended on methane-to-oxygen ratio (M = 1, 2). Higher current density (J) to a certain extent could suppress NiO reduction and promote Ni oxidation. Scanning electron micrographs confirmed that Ni/NiO redox cycles had occurred mainly near the anode surface. The obtained results imply that gradual reoxidation of the Ni-anodes accompanying the various oscillation behaviors plays an important role in the degradation of the SC-SOFCs, especially under oxidation conditions.  相似文献   

17.
C-type Y2O3 ceramics (relative density ~94%) were prepared at 1500 °C for 2 hours with 1% wt. ZnO as sintering aid. The cell parameters of Y2O3 from Rietveld refinements are a = 10.6113(1) Å, V = 1194.8(1) Å3. The vibrational modes / lattice dynamics of Y2O3 were investigated using vibrational spectra (Raman and infrared reflection spectra) and first-principle (DFT) calculations. Eight of the 22 predicted first-order Raman modes and 12 of 16 predicted IR modes are observed and reliably assigned. For the observed vibrational modes, an excellent linearity (fexp = 1.023ftheo, R2 = 0.9999) between frequency from calculations (ftheo) and that from measurements (fexp) is observed. Accordingly, the corrected frequency (fcor) of vibrational modes, phonon band structure, and density of phonon states (DOPS) of Y2O3 are presented, in which, the frequency of phonons of Y2O3 is ≤625.2 cm−1 (wavelength ≥16.0 μm) with a gap of 30.6 cm−1 from 486.0 to 516.6 cm−1 (wavelength 20.6 - 19.4 μm) at room temperature. The modes with ftheo ≥292.5 cm−1 (fcor ≥299.2 cm−1) are dominated by the vibrations of O2− (light atom vibrations) and the vibrational modes with ftheo ≤239.0 cm−1 (fcor ≤244.5 cm−1) are dominated by the vibrations of both Y3+ and O2− (co-vibrations). The three modes Tu(7) at 301.6 cm−1, Tu(10) at 333.7 cm−1, and Tu(12) at 369.7 cm−1 of Y-O stretch vibrations dominate the phonon dielectric constant and dielectric loss of Y2O3 with more than 85% contributions.  相似文献   

18.
Carbon supported bimetallic PtAu electrocatalysts for sodium borohydride electrooxidation are prepared by a modified citrate stabilized NaBH4 reduction process at different pH and temperature values. The physical properties of the materials are characterized by X‐ray diffraction spectroscopy, energy dispersive spectrometry, X‐ray photoelectron spectroscopy and transmission electron microscopy. Nano sized electrocatalysts have narrow size distributions and are uniformly dispersed on the surface of carbon support. Electrochemical performances of catalysts for sodium borohydride electrooxidation are tested with 25 cm2 single fuel cell. The highest performance is obtained at a peak power density of 161 mW cm−2 with 20 wt. % PtAu/C catalyst of 7.03 nm. Impact of the fuel cell operation parameters including concentration of NaBH4, flow rates of oxidant and fuel, and fuel cell operation temperature are investigated. The best operation parameters are obtained at 1 M NaBH4 concentration, 3 cm3 min−1 NaBH4 flow rate, 0.2 dm3 min−1 oxygen flow rate and 65 °C fuel cell temperature.  相似文献   

19.
《Ceramics International》2019,45(12):14524-14532
To determine the optimal combination of NiO and Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ (BSCZY) for fabricating anode materials, Ni-BSCZY samples were prepared using the solid state reaction process. The porous structure of anode substrates not only provides mechanical strength to the fuel cells to enable fuel gases to flow to the electrolyte membrane but also creates an excess surface area on which to form a larger triple-phase boundary when NiO is added to the anode sample. The effect of NiO content on the microstructures, surface area, and electric conductivity of these Ni-BSCZY (NiO55-BSCZY, NiO60-BSCZY, and NiO65-BSCZY) anode materials were systematically investigated using X-ray diffraction, scanning electron microscopy, an analytic technique based on the Brunauer–Emmett–Teller surface area theory, and four-probe conductivity analysis. In addition, three anode-supported cells containing identical electrolytes but various combinations of NiO and BSCZY anode materials were fabricated and used for performance and electrochemical impedance measurement. The results revealed that the reactive surface area of the anode in contact with the electrolyte plays a crucial role in total cell performance. The cell containing the anode material (NiO60-BSCZY) with the highest surface area of 6.91 m2 g−1 and the lowest total resistance of 2.19 Ω cm2 exhibited the highest power density of 169.2 mW cm−2 at 800 °C.  相似文献   

20.
In recent years, the interest for using biogas derived from biomass as fuel in solid oxide fuel cells (SOFCs) has increased. To maximise the biogas to electrical energy output, it is important to study the effects of the main biogas components (CH4 and CO2), minor ones and traces (e.g. H2S) on performance and durability of the SOFC. Single anode‐supported SOFCs with Ni–Yttria‐Stabilised‐Zirconia (YSZ) anodes, YSZ electrolytes and lanthanum‐strontium‐manganite (LSM)–YSZ cathodes have been tested with a CH4–H2O–H2 fuel mixture at open circuit voltage (OCV) and 1 A cm–2 current load (850 °C). The cell performance was monitored with electric measurements and impedance spectroscopy. At OCV 2–24 ppm H2S were added to the fuel in 24 h intervals. The reforming activity of the Ni‐containing anode decreased rapidly when H2S was added to the fuel. This ultimately resulted in a lower production of fuel (H2 and CO) from CH4. Applying 1 A cm–2 current load, a maximum concentration of 7 ppm H2S was acceptable for a 24 h period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号