首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
研究了电沉积Co-Cr3C2纳米复合涂层的热稳定性.析出相Cr3C2颗粒均匀弥散地分布在涂层中,质量分数大约为30%.600℃以上退火导致涂层当中形成孔隙.400℃以下和600℃以上退火分别有利于Co纳米晶粒沿[002]和[220]方向生长.低于400℃退火可以同时获得优异的耐磨性和高硬度.经低于400℃退火,涂层的摩擦系数达到0.12,而经200℃退火后的涂层的摩擦系数低至0.04.  相似文献   

2.
采用真空阴极电弧离子镀技术,在H13钢表面制备了CrTiAlSiCN多元复合纳米硬质涂层,利用球痕仪、洛氏压痕仪、划痕仪、HV显微硬度计、UMT多功能摩擦磨损试验机、SEM带EDS及XRD对400、500、600和700℃高温退火的涂层硬度、结合力、耐磨损性及高温抗氧化性进行分析研究。结果表明,涂层呈多层结构,厚度约5μm,随着退火温度的增高,涂层硬度基本保持不变,结合力下降。600℃退火,涂层摩擦力和摩擦系数增大,磨损机制开始由粘着摩损向磨粒磨损转换;700℃退火,涂层摩擦力和摩擦系数降低,磨损机制转换为磨粒磨损,涂层耐磨损性增强。涂层表面大颗粒周围优先氧化,形成以Al_2O_3为主、少量TiO_2、Cr_2O3_的氧化层,其中Al_2O_3与Cr_2O_3能抑制O_2向涂层内部持续扩散生成TiO_2,提高了涂层高温抗氧化性。  相似文献   

3.
Ni/Al复合涂层经200℃以上温度退火后,可在Ni层和Al层的交界处形成Al3Ni和Al3Ni2两个稳定相以及Al9Ni2亚稳相。随着退火温度的升高,复合涂层中Ni和Al晶粒的长大使得涂层的强度和硬度降低。摩擦系数从退火前的0.36减小为退火后的0.27,涂层摩擦性能改善的主要原因是由于金属间化合物相的产生。  相似文献   

4.
采用多弧离子镀技术和后续的真空退火工艺在06Cr19Ni10不锈钢基体上制备了Ti2AlN涂层;研究了多弧离子镀工艺及退火处理对涂层的成分、相组成以及摩擦系数等性能的影响。结果表明,沉积时氮气通量以及退火温度的选择是Ti2AlN相形成的关键因素,在氮气通量40 nm3/h、负偏压400 V、靶电流75 A、占空比90%的条件下镀制的涂层经700℃真空退火获得了纯度较高的Ti2AlN涂层,其硬度为7.2 GPa,摩擦系数仅为0.18。  相似文献   

5.
为抑制WS2在激光熔覆过程中的分解,增加其与金属基体的相容性,采用化学镀的方法,在WS2粉末颗粒表面包覆一层微米级Ni-P合金,对比研究了添加包覆粉末和未包覆粉末所制备的高温自润滑耐磨复合涂层的微观组织和室温、300℃和600℃下的摩擦学性能.NiCr-Cr3C2/30% WS2(Ni-P)涂层组织主要为初生树枝状Cr7C3、共晶γ-(Fe,Ni)/Cr7C3和CrS,以及少量弥散分布的WS2;对涂层进行摩擦学实验表明,添加包覆粉末所制备的涂层摩擦学性能更佳,室温和300℃时,NiCr-Cr3C2/30%WS2(Ni-P)涂层有较低的摩擦系数,且室温、300℃和600℃时,NiCr-Cr3C2/30% WS2(Ni-P)涂层磨损率都低于NiCr-Cr3C2/30%WS2涂层.  相似文献   

6.
研究水热合成氧化锌纳米棒的高温热稳定性。采用X射线衍射和扫描电镜对氧化锌纳米棒的结构与形貌进行表征。采用热重分析研究氧化锌纳米棒在热处理过程中的失重情况。结果表明:在退火温度低于400°C时,氧化锌纳米棒具有较好的热稳定性。当退火温度超过600°C时,氧化锌纳米棒的长径比明显降低并且纳米棒的团聚趋势加剧。退火处理对氧化锌纳米棒的气敏性能具有显著影响。与未经退火处理的氧化锌纳米棒相比,经历400°C退火处理的氧化锌纳米棒对浓度为25×10-6的H2灵敏度可以从2.22提高至3.56。经历400°C热退火处理的氧化锌纳米棒对H2表现出最优的气敏性能。  相似文献   

7.
目的 探讨和研究Cr3C2/NiCr-Ag-MoO3-CaF2和Cr3C2/NiCr-CaF2金属陶瓷涂层与ZrO2配副在宽温域(室温~800 ℃)内的摩擦磨损行为和磨损机理。方法 以Cr3C2/NiCr作为基底材料,CaF2、Ag、MoO3作为固体润滑剂,采用大气等离子喷涂技术在718高温合金钢基体表面,制备Cr3C2/NiCr-Ag-MoO3-CaF2和Cr3C2/NiCr-CaF2金属陶瓷涂层。采用UMT-3高温摩擦磨损实验机评价涂层从室温~800 ℃的摩擦磨损性能,采用显微硬度计和万能材料实验机测试涂层的显微硬度和粘结强度,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和拉曼光谱仪分析涂层的显微结构、物相组成和磨痕的微观形貌。结果Cr3C2/NiCr-CaF2和Cr3C2/NiCr-Ag-MoO3-CaF2金属陶瓷涂层结构致密,显微硬度和结合强度均随着固体润滑剂含量的增加而有所下降,结合强度分别为46.45、36.65 MPa,显微硬度分别为524.61HV0.3、478.29HV0.3。涂层的摩擦系数和磨损率均随着温度的升高而降低,800 ℃时Cr3C2/NiCr-CaF2和Cr3C2/NiCr-Ag-MoO3-CaF2涂层的摩擦系数和磨损率最低,最低摩擦系数分别为0.30和0.19,最低磨损率分别为3.84×10-5、2.89×10-5 mm3/(N?m)。 结论 CaF2可以改善600 ℃以上的摩擦学性能,Ag、CaF2、MoO3在涂层磨损表面发生摩擦化学反应生成的钼酸银和钼酸钙,可以有效地改善Cr3C2/NiCr涂层在600 ℃以上的摩擦学性能。  相似文献   

8.
对等离子喷涂纳米结构Al_2O_3/Ti O_2陶瓷涂层在不同温度、时间下进行退火处理,并结合喷涂态涂层进行对比分析,研究了热处理对陶瓷涂层断裂韧性的影响,分析了涂层的显微结构和物相的变化以及残余应力的松弛情况。结果表明,退火处理可以显著降低涂层的残余应力而提高断裂韧性,并在400℃退火3 h效果达到最好。  相似文献   

9.
贾伟飞  梁灿棉  胡锋 《表面技术》2024,53(5):174-183
目的 针对含氢DLC涂层热稳定性很差的问题,探究高温下含氢DLC涂层的微观组织变化特征,以及高温对其力学性能的影响。方法 采用等离子体强化化学气相沉积(PlasmaEnhancedChemicalVapor Deposition, PECVD)在S136模具不锈钢表面沉积以Si为过渡层的含氢DLC复合涂层,利用光学显微镜、扫描电镜、拉曼光谱、X射线电子衍射仪、三维轮廓仪研究DLC涂层的微观结构,采用划痕测试仪、往复式摩擦磨损试验机、纳米压痕仪研究DLC涂层的力学性能,并通过LAMMPS软件,利用液相淬火法建立含氢DLC模型,模拟分析经高温处理后涂层的组织变化特征和纳米压痕行为。结果 在400℃、2 h的退火条件下,拉曼谱峰强度ID/IG由未退火的0.7增至1.5,涂层发生了石墨化转变,同时基线斜率下降,H元素析出;XPS结果表明,在此条件下涂层中sp2杂化组织相对增加,氧元素增多,涂层粗糙度增大;在600℃、2 h退火条件下,DLC发生了严重氧化,LAMMPS模拟结果表明,在400℃高温下涂层的分子键长变短,表明sp3杂化组织在高温下吸收能量...  相似文献   

10.
目的在等离子喷涂的基础上,采用电接触烧结技术制备具有良好摩擦学性能的Ni Cr-Cr_3C_2涂层。方法采用等离子喷涂工艺将NiCr-Cr_3C_2涂层预置到GH4169合金试件表面,再经过电接触烧结工艺制备增强涂层。利用OM、SEM、XRD及EDS研究耐磨层的物相、显微组织及化学组成特征,并采用球盘式摩擦磨损试验机对涂层的摩擦学行为进行评价。结果通过电接触烧结过程中的瞬时热效应,促进了NiCr-Cr_3C_2等离子喷涂层界面的塑性变形及热扩散,使涂层的孔隙率由5%降到2%,结合强度由46MPa提升到210 MPa。在400℃和600℃时,摩擦表面可形成完整的摩擦层,共晶氟化物组分使涂层摩擦系数由室温至400℃条件下的0.8降低到600℃条件下的0.45。涂层在600℃条件下表现出氧化磨损的特征。结论电接触烧结工艺能实现等离子喷涂Ni Cr-Cr_3C_2涂层的性能增强,获得较高结合强度、较低孔隙率和摩擦系数,在600℃条件下表现出较好的摩擦磨损性能。  相似文献   

11.
采用Ni和AI颗粒复合电沉积与后续真空退火的方法,分别于600℃和800℃退火温度下制备了两种新型细晶Ni_3Al涂层。与粗晶合金相比,经1000℃氧化20 h后,合金的氧化层发生大面积剥落,而两种涂层的氧化膜粘附性佳,其主要原因为细晶涂层内的大量晶界促进Al向氧化前沿的扩散,从而抑制了氧化膜/基体界面处Kirkendall孔洞的形成与长大。同时发现,800℃退火涂层氧化膜结构由外至内分别为NiO/NiAl_2O_4/Al_2O_3,而600℃退火涂层仅生成NiAl_2O_4与Al_2O_3,对该原因进行了探讨。  相似文献   

12.
许启民  张霄  赵禹  黄仲佳  周晓宏  王刚 《表面技术》2022,51(3):86-94, 166
目的 通过退火来提高等离子熔覆FeCoCrNiAl高熵合金涂层的耐磨性。方法 通过等离子熔覆技术在45号钢基体上制备了FeCoCrNiAl高熵合金涂层,并分别在500、800、1200℃温度下退火2 h。退火前后的涂层由XRD、能谱仪、扫描电镜、三维形貌仪、摩擦磨损试验机、硬度仪对其组织形貌及力学性能进行测试与表征。结果 退火前的FeCoCrNiAl熔覆涂层由BCC相和大量非稳态FCC相构成。经500℃退火后,涂层形成了单一BCC相;经800℃退火后,涂层中的BCC相开始转变并析出均匀分布的FCC相。以上两个涂层的硬度均处于较高水平,但受FCC相的影响,经400℃摩擦磨损30 min后,800℃退火后的涂层的耐磨性开始降低。而1200℃退火后,涂层中析出了大量棒状和不规则形状的富Fe-Cr相,导致其硬度和耐磨性显著降低,涂层的磨损更严重。结论 未退火的涂层和经500℃退火后的涂层的磨损机制主要为磨粒磨损,经800℃退火后的涂层属于磨粒磨损和粘着磨损机制,而1200℃退火后的涂层主要是疲劳磨损、磨粒磨损和粘着磨损。  相似文献   

13.
陈恩  冯长杰 《表面技术》2017,46(1):106-110
目的探索磁控溅射制备的Ti-Al-Si-N涂层在不同环境温度下的摩擦学性能。方法利用磁控溅射技术,在AISI304不锈钢表面制备了Ti-Al-Si-N涂层,采用扫描电镜、能谱仪和X射线衍射仪研究了涂层的成分与微观结构,利用HT-1000型高温摩擦磨损试验机,以直径为5 mm的Al_2O_3球作为摩擦副,研究了Ti-Al-Si-N涂层在室温、200、400、600℃时的摩擦学性能。结果磁控溅射制得的Ti-Al-Si-N涂层表面平整、致密,具有典型的柱状晶结构;在室温、200、400、600℃的环境温度下,涂层的摩擦系数分别为0.6、0.35、0.25和0.2,磨损体积分别为0.319、0.232、0.0149和0.0136 mm~3。涂层的摩擦系数和磨损体积均随温度的升高而降低。结论随着测试温度的升高,磨痕区域生成越多的以氧化钛和氧化铝为主的氧化物,其具有一定的减摩作用。在室温下,涂层的磨损机理主要为疲劳剥落,200℃时为磨粒磨损,400℃时为磨粒磨损和氧化磨损,600℃时主要为氧化磨损。  相似文献   

14.
等离子喷涂CoCrAl-B4C涂层的微观结构与性能   总被引:5,自引:5,他引:0  
采用大气等离子喷涂技术制备了CoCrAl-B4C涂层,测试了涂层的硬度、结合强度、热震性能及不同条件下的摩擦系数。结果表明:涂层的平均显微硬度为980HV0.2,平均结合强度为17.5MPa,经900℃水淬热震循环10次仍然完好;涂层经700℃热处理后,摩擦系数较低且波动小,水蒸气的存在有利于涂层摩擦系数的降低,其主要原因是涂层表面在热处理与摩擦过程中生成了B2O3和H3BO3自润滑相。  相似文献   

15.
利用射频磁控溅射制备了TiO2致密薄膜,并通过退火处理实现TiO2的相转变,采用扫描电镜,X射线衍射等手段对薄膜相结构进行表征并做了详细的分析,结果表明,退火后TiO2薄膜结构致密,表面呈现出大小均匀的纳米晶粒。400 ℃退火时,TiO2薄膜为单一的锐钛矿相,500~600 ℃退火时为锐钛矿和金红石混合相,700 ℃以上退火时则完全转变为金红石相。  相似文献   

16.
在数控机床用W6Mo5Cr4V2铣刀表面沉积了3种不同组分的AlCrTiSi N涂层,对比分析了3种涂层的纳米硬度、弹性模量、摩擦系数、磨损率和切削寿命。结果表明,随着Al∶Cr原子比的减小,铣刀表面涂层的纳米硬度和弹性模量都表现为逐渐增加的趋势,涂层C的纳米硬度和弹性模量均最大;涂层A的摩擦系数相对较高,其次为涂层B,而涂层C的摩擦系数最低;涂层C具有较高的耐磨性能,其次为涂层B,而涂层A的耐磨性能相对较差;随着切削长度的增加,3种涂层刀具的后刀面磨损呈现逐渐升高的趋势,涂层C刀具的后刀面磨损最小;3种涂层刀具的磨损机制主要为粘着磨损和磨粒磨损,涂层C刀具的切削性能最好。  相似文献   

17.
目的 通过对激光熔覆CoCrFeNiW0.6高熵合金涂层进行退火处理,使涂层性能得到进一步提高。方法 采用RFL–C1000光纤激光器在45钢表面制备CoCrFeNiW0.6高熵合金涂层,通过SXL–1200管式电阻炉在不同温度下(600、800、1 000 ℃)对高熵合金涂层进行退火处理,保温时间为2 h,冷却方式为随炉冷却。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、显微硬度计、摩擦磨损试验机等对熔覆层的微观组织、显微硬度和摩擦磨损性能进行分析和测试。结果 CoCrFeNiW0.6高熵合金涂层由FCC相和μ相(Fe7W6)组成,经过不同温度退火处理后,涂层未析出新的相,μ相衍射峰强度呈先减小后增大的趋势;涂层组织经高温退火(800 ℃、1 000 ℃,2 h)后发生了明显的改变,经800 ℃/2 h退火处理后,枝晶间析出了大量μ相沉淀,经1 000 ℃/2 h退火处理后晶界开始出现断裂分解,晶粒内部和晶界部位析出了大量的富W颗粒相(μ 相)。经1 000 ℃/2 h退火处理后,熔覆层具有较高的平均显微硬度,为475.68HV0.3,相较于未经退火处理的熔覆层,其硬度提高了约45%;经600 ℃/2 h退火处理后,涂层的平均摩擦因数最低,约为0.226,磨损量最小,与未经退火处理的涂层相比,其磨损量降低了约28%。退火温度的升高并未使磨损机制发生明显改变,主要为磨粒磨损。结论 高温退火处理可以促进μ相的生成;经退火后,CoCrFeNiW0.6高熵合金涂层的硬度得到显著提高,改善了涂层的摩擦磨损性能,强化机制为固溶强化和第二相强化。  相似文献   

18.
目的提高304不锈钢减摩耐磨性能。方法使用LDM-8060型半导体激光加工系统,制备出三种不同配比的Ti_3SiC_2-Ni基自润滑耐磨复合涂层。使用X射线衍射仪(XRD)、扫描电镜(SEM)及其自带的能谱仪(EDS)对304不锈钢与Ti_3SiC_2-Ni基涂层进行表征,并系统地分析其在室温和600℃下的摩擦学性能和磨损机理。结果复合涂层主要由Cr0.19Fe0.7Ni0.11固溶体,硬质相Fe_2C、Cr_7C_3和Ti C,润滑相Ti_3SiC_2组成。其平均显微硬度分别为451.14、419.33、359.92HV0.5,明显高于304不锈钢基体的平均显微硬度(238.91HV0.5)。室温下,Ti_3SiC_2-Ni基复合涂层摩擦系数的平均值分别为0.41,0.46和0.48,磨损率分别为6.37×10~(-5)、16.52×10~(-5)、4.16×10~(-5) mm~3/(N·m),均低于304不锈钢(0.56、46.35×10~(-5) mm~3/(N·m))。在600℃下,Ti_3SiC_2-Ni基复合涂层的平均摩擦系数分别为0.38,0.43和0.41,磨损率分别为12.51×10~(-5)、7.58×10~(-5)、7.79×10~(-5)mm~3/(N·m),也均低于304不锈钢(0.66,24.25×10~(-5)mm~3/(N·m))。结论在室温和600℃下,Ti_3SiC_2-Ni基复合涂层能有效地提高304不锈钢的显微硬度,进而提升其摩擦学性能。其中添加10%Ti_3SiC_2的Ti_3SiC_2-Ni基复合涂层在600℃下表现出最好的耐磨性,而添加5%Ti_3SiC_2的Ti_3SiC_2-Ni基复合涂层在室温和600℃下表现出最好的减摩性能。  相似文献   

19.
黄元盛  温立哲 《表面技术》2016,45(7):162-166
目的研究Al_3CoCrCu_(1/2)FeMoNiTi高熵合金涂层的退火时效硬化及其强化机理。方法使用激光熔覆设备,在40Cr钢上制备了Al_3CoCrCu_(1/2)FeMoNiTi高熵合金涂层,对涂层进行了退火处理。使用X射线衍射仪、扫描电子显微镜和显微硬度计对涂层进行了分析。结果涂覆态涂层为BCC单相结构,经300℃和500℃退火,涂层仍然为BCC单相;700℃退火后,涂层析出了NiTi金属间化合物相;900℃退火后,涂层由FCC相及NiTi金属间化合物组成。涂覆态和经300~700℃退火的涂层为胞粒状,经900℃退火后,涂层为板条状。经300℃退火,涂层硬度下降,但超过300℃退火,硬度比涂覆态的高。700℃退火合金硬度达到最大值924HV。退火温度升到900℃后,硬度比700℃退火的低。NiTi析出相促进了硬度提高,位错强化机制能较好解释该高熵合金的固溶强化现象。结论Al_3CoCrCu_(1/2)FeMoNiTi合金涂层具有明显的时效硬化效应,700℃退火可获得最佳的时效硬化效果。  相似文献   

20.
目的在碳化硅基底上制备a-C:Si涂层,通过分析涂层在不同退火温度下的热稳定性机制,拓宽其在高温领域的应用。方法采用非平衡磁控溅射法在碳化硅表面沉积a-C:Si涂层,并进行不同温度的退火热处理,通过XPS、SEM、拉曼光谱对涂层进行表征与分析。利用分子动力学对a-C:Si涂层退火过程进行仿真,从涂层与原子结构、原子径向分布函数、配位数、键长及键角等多方面对涂层石墨化行为进行分析。通过仿真与实验数据的交叉分析,探究a-C:Si涂层热稳定性机制。结果a-C:Si涂层主要由C、Si元素组成,且碳原子之间主要形成sp~2和sp~3两种杂化键,其中sp~3键居多,随退火温度的上升,其相对含量下降。a-C:Si涂层的拉曼光谱在400~500℃时出现明显的D峰,I_D/I_G积分强度比和G峰峰值具有相似的变化趋势。退火温度升高时,涂层中键长较长的sp~3-sp~3键最先开始向sp~2-sp~2转化,随着退火温度的升高,键长较短的sp~3-sp~3键才开始变化。石墨化过程中,sp~3-sp~3键转化率最大,Si与C形成高热稳定性的Si—C键。结论退火处理对a-C:Si涂层的热稳定性有重要影响,退火温度为400℃时,a-C:Si涂层开始发生石墨化转变。Si元素能稳定原子结构,与Si成键的C-sp~3杂化原子具有更高的热稳定性,降低了石墨化的速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号