首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
熔模精密铸造对于铸件近净成形具有重要意义,但目前鲜见对其铸件-铸型界面换热系数的相关研究.本试验在一维传热模型中采用非线性估算法对工业纯铝在熔模铸造过程中与型壳的换热行为进行了研究,分析结果表明:在凝固前期,铸件与型壳之间的热流密度基本不变,而界面换热系数随两者温差减小而增大;凝固中期,界面换热系数随着整体固相分数增加而线性下降;凝固后期,界面换热系数下降变得十分缓慢.将在一维模型中反求得到的界面换热系数应用到三维铸件模型中,得到的模拟温度与实测温度基本吻合,证明通过一维模型与非线性估算法求取的界面换热系数比较准确,有望在铝合金精密铸造温度模拟中得到应用.  相似文献   

2.
挤压铸造扭转复合成形(SQ-T)集挤压铸造(SQ)与扭转成形(T)的优势于一体,可实现铝合金工件的高效成形。为准确描述铝合金SQ-T工艺下的模具-工件界面换热行为并对成形效果进行评估,通过搭建SQ-T实验平台和构建界面换热系数(IHTC)反求模型,求解成形过程中的IHTC,并对IHTC的变化规律、工件成形效果及工件组织性能进行研究。结果表明:反算模型精度较高,96%以上反算结果的相对误差小于10%;在SQ中加入扭转变形后,工件的气孔数量减少、尺寸变小,模具-工件界面换热条件更好;SQ-T实验的IHTC前半段高于SQ实验,最大提升了60%;IHTC的增加使SQ-T实验工件的冷却速度加快,显微组织更加细小均匀,硬度提高了19.3%,动态峰值应力提升了7.6%。  相似文献   

3.
对马氏体不锈钢纵切圆柱水冷淬火过程中发生的热处理变形进行了计算机模拟和实验研究.研究结果表明,界面换热系数对变形模拟结果具有重要影响.采用文献的界面换热系数,纵切圆柱变形趋势的模拟结果与实验结果完全相反.而采用实测的界面换热系数,变形趋势吻合良好.不同的界面换热系数对材料的屈服行为计算影响很大,较大的界面换热系数加剧了纵切圆柱不同部位的冷速差异,导致工件在组织应力作用下更容易发生塑性变形,是影响最终变形结果的主要原因.  相似文献   

4.
界面换热系数对淬火过程变形模拟影响的敏感性分析   总被引:1,自引:0,他引:1  
对316不锈钢C型环和纵切圆柱2种试样在水冷淬火过程中发生的热处理变形进行了计算机模拟和实验研究.结果表明:温度场的精确测量对综合界面换热系数的逆运算结果具有重要影响,并进一步影响热处理变形的模拟预测.采用低采集频率数据逆运算得到的界面换热系数,在温度变化剧烈的高温阶段偏低,致使变形模拟结果严重失真.采用高采集频率逆运算得到的界面换热系数,C型环和纵切圆柱试样变形的模拟结果均与实验结果吻合较好.高温阶段界面换热系数对材料的屈服行为的计算结果影响很大,是影响变形结果的主要原因.较大的界面换热系数将使材料在较高温度时即进入屈服状态,并且处于屈服状态的温度范围也较大,更容易发生塑性变形以及引发刚性运动.淬火变形的模拟结果对高温段界面换热系数的变化较为敏感,而对低温段的变化不敏感.  相似文献   

5.
在改进Hamasaiid模型的基础上提出了新的金属型铸造界面换热系数峰值hmax预测模型,该模型引入表面张力参数,定量研究其对界面换热的影响。采用A356铝合金金属型重力铸造实验对模型进行验证。结果表明:反求计算的hmax约为5944 W/(m2·K),采用Hamasaiid模型计算的hmax约为7987 W/(m2·K),误差约为34%;新模型未考虑表面张力时计算的hmax约为6228 W/(m2·K),误差约为5%,考虑表面张力时计算的hmax约为5992W/(m2·K),误差约为1%。新模型计算精度有较大提升,计算结果与反求结果具有很好的一致性,表面张力对计算精度有一定影响。  相似文献   

6.
为有效提高数值模拟的准确性.通过实测反求法对材料界面换热进行了测定.提出界面间换热是随温度变化的函数值。按照实验方案.在保证测量仪器.仪表精度的基础之上.采用特制热电偶进行了温度场数据的采集工作。通过实测温度场数据、数值模拟与凝固过程中界面换热系数的反向求解相结合的方法.得出铸件/铸型界面间的换热随温度变化的函数值。通过应用ProCAST软件反求模块进行逆运算,确定了现有某铸铁材料与树脂砂铸型材料间的界面换热值。计算结果表明,整个凝固过程中热电偶处的温度模拟结果与实验结果的最大相对误差在±10℃内.数值模拟精度得到了有效的提高,说明了此界面换热测定方法的可行性。  相似文献   

7.
郭志鹏  熊守美   《金属学报》2007,43(11):1149-1154
采用"阶梯"铸件,设计了压铸过程模具温度测量的实验方案并进行了压铸实验.以实验中测得的铸型内部不同位置的温度为基础,采用热传导反算法求解了压铸过程中铸件/铸型界面热流以及换热系数;分析了铸件的厚度对于界面热流以及换热系数的影响,结果表明:压铸过程铸件/铸型界面热流或是换热系数随着压射过程的进行迅速升高直至最大值,然后随着凝固过程的进行而减小;同时,铸件的不同厚度部位与铸型之间的界面热流和换热系数的变化规律也不同,随着铸件厚度的增大,铸件/铸型之间的界面热流和换热系数峰值均减小,但是界面热流和换热系数较大值保持的时间则逐渐增大.  相似文献   

8.
《铸造技术》2015,(2):389-393
用反算得到的界面换热系数对砂型铸锭的温度场进行了模拟计算。结果表明,对砂型铸锭来说,界面换热系数对铸件温度场的影响很小。然后优化了型砂的热物性参数,用这些参数对砂型铸锭的温度场进行了计算,并与实测温度场进行了对比,发现优化后的型砂热物性参数显著提高了温度场的模拟精度。最后,通过对反算前后砂型铸锭界面换热系数,以及型砂热物性参数修正前后对砂型铸锭温度场模拟平均差的对比,说明同时采用反算后的界面换热系数和修正后的型砂热物性参数,可获得模拟精度最高的温度场,其中热物性参数的影响最为明显。  相似文献   

9.
热传导反算模型的建立及其在求解界面热流过程中的应用   总被引:9,自引:0,他引:9  
基于热传导反算中的非线性估算法,建立了求解界面热流及换热系数的数学模型,并在此基础上开发了热传导反算程序.通过在网格边界上施加三角形热流,求解出网格内部不同位置点的温度变化曲线,然后以求解出的温度为输入数据,利用反算程序求解出界面热流,通过对比求解的热流和实际的热流,验证了该模型的准确性.同时本文还分析了测温传感器的滞后、热流形状、计算参数、采样频率以及测温点离表面的距离对于计算结果的影响,并且针对相关问题提出了解决方案.  相似文献   

10.
常用钢淬火表面换热系数耦合相变的反传热分析   总被引:1,自引:1,他引:1  
根据反传热方法和实测的每种钢探头在多种介质中淬火时的冷却曲线,建立了耦合相变的轴对称有限差分模型,结合编写的FORTRAN程序计算每种钢探头淬火过程的表面换热系数。结果表明,相变对计算有影响,考虑相变时的计算值是合理的。同时发现,淬火过程的换热系数与淬火介质及探头材料均相关,相同的钢探头在不同介质中淬火时的换热系数不同,而不同材料的钢探头在同种介质中淬火时的换热系数也不同。  相似文献   

11.
The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.  相似文献   

12.
1 INTRODUCTIONThesolidifiedmicrostructuresofalloysdependontheirsolidifyingprocesswhoseprimarycharacteristicsarethetemperaturedropofthesuperheatedmeltandthere leaseofthelatentheat.Sothestudyontheheattransferduringthesolidificationprocessistheessentialprobleminthesolidificationtheorystudy .Theresearchersworkingonthenumericalsimulationofthesolidificationprocessallknowthattheinterfacialheattransfercoefficientatthecasting/mouldisavariablechangingwithtime .Thusthedeterminationoftheinterfacialh…  相似文献   

13.
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.  相似文献   

14.
确定不同条件下板料-模具界面的换热系数对控制硼钢板在热成形中的局部冷却速率、获得组织性能呈区域性分布的构件具有重要意义,还可为热成形过程精确数值仿真提供可靠的热边界条件。设计了简单、有效的实验装置以模拟硼钢板热成形中不同单边间隙下板料与模具间的传热状态,其中测温点处的温度变化仅与板料-模具界面换热系数相关,从而为界面换热系数的准确反演提供了保障。建立了界面换热系数的有限元优化模型,反演获得了不同间隙下B1500HS板与H13模具钢之间的换热系数,发现其随间隙的增大呈指数函数式减小,并对反演获得的界面换热系数进行了实验验证。  相似文献   

15.
The interfacial heat transfer coefficient(IHTC) between the casting and the mould is essential to the numerical simulation as one of boundary conditions. A new inverse method was presented according to the Tikhonov regularization theory. A regularized functional was established and the regularization parameter was deduced. The functional was solved to determine the interfacial heat transfer coefficient by using the sensitivity coefficient and Newton-Raphson iteration method. The temperature measurement experiment was done to ZL102 sand mold casting, and the appropriate mathematical model of the IHTC was established. Moreover, the regularization method was used to determinate the IHTC. The results indicate that the regularization method is very efficient in overcoming the ill-posedness of the inverse heat conduction problem(IHCP), and ensuring the accuracy and stability of the solutions.  相似文献   

16.
Heat flow between the casting and the mould during solidification of three commercially pure metals, in graphite, steel and graphite lined steel moulds, was assessed using an inverse modelling technique. The analysis yielded the interfacial heat flux (q), heat transfer coefficient (h) and the surface temperatures of the casting and the mould during solidification of the casting. The peak heat flux was incorporated as a dimensionless number and modeled as a function of the thermal diffusivities of the casting and the mould materials. Heat flux transients were normalised with respect to the peak heat flux and modeled as a function of time. The heat flux model proposed was used to estimate the heat flux transients during solidification in graphite lined copper composite moulds.  相似文献   

17.
基于DEFORM反传热模型表面换热系数的确定   总被引:1,自引:0,他引:1  
以7075铝合金厚板淬火过程为对象,研究DEFORM反传热模型中控制参数对表面换热系数计算和温度预测精度的影响规律。结果表明,当选择实测温度曲线上的拐点温度作为温度控制点,且表面换热系数初始值接近平均换热系数时,采用反传热模型确定的表面换热系数所预测的冷却曲线与实测曲线吻合较好。在此基础上选取合理的控制参数,并确定了7075铝合金厚板淬火过程的表面换热系数,经冷却曲线预测结果与实测值对比表明,采用DEFORM反传热模型确定的表面换热系数所预测的温度场有较高精度,可以满足工程应用需要。  相似文献   

18.
Wang  Fei-fan  Wu  Ke-yan  Wang  Xu-yang  Han  Zhi-qiang 《中国铸造》2017,14(5):327-332
As an advanced near-net shape technology, squeeze casting is an excellent method for producing high integrity castings. Numerical simulation is a very effective method to optimize squeeze casting process, and the interfacial heat transfer coefficient (IHTC) is an important boundary condition in numerical simulation. Therefore, the study of the IHTC is of great significance. In the present study, experiments were conducted and a"plate shape" aluminum alloy casting was cast in H13 steel die. In order to obtain accurate temperature readings inside the die, a special temperature sensor units (TSU) was designed. Six 1 mm wide and 1 mm deep grooves were machined in the sensor unit for the placement of the thermocouples whose tips were welded to the end wall. Each groove was machined to terminate at a particular distance (1, 3, and 6 mm) from the front end of the sensor unit. Based on the temperature measurements inside the die, the interfacial heat transfer coefficient (IHTC) at the metal-die interface was determined by applying an inverse approach. The acquired data were processed by a low pass filtering method based on Fast Fourier Transform (FFT). The feature of the IHTC at the metal-die interface was discussed.  相似文献   

19.
As one of the key boundary conditions during casting solidification process, the interfacial heat transfer coefficient (IHTC) affects the temperature variation and distribution. Based on the improved nonlinear estimation method (NEM), thermal measurements near both bottom and lateral metal-mold interfaces throughout A356 gravity casting process were carried out and applied to solving the inverse heat conduction problem (IHCP). Finite element method (FEM) is employed for modeling transient thermal fields implementing a developed NEM interface program to quantify transient IHTCs. It is found that IHTCs at the lateral interface become stable after the volumetric shrinkage of casting while those of the bottom interface reach the steady period once a surface layer has solidified. The stable value of bottom IHTCs is 750 W/(m2·°C), which is approximately 3 times that at the lateral interface. Further analysis of the interplay between spatial IHTCs and observed surface morphology reveals that spatial heat transfer across casting-mold interfaces is the direct result of different interface evolution during solidification process.  相似文献   

20.
通过6061铝合金末端淬火测得的冷却曲线,结合有限差分法和反传热求解法,研究了6061合金固溶处理在不同冷却方式下的冷速及表面换热系数与温度的变化规律。结果表明,6061铝合金在水雾冷和喷水冷却过程中,端面冷速先增大后减小,在400℃左右达到峰值,峰值冷速约为30℃/s。6061铝合金的表面换热系数与温度呈非线性关系,其大小随着温度的降低先逐渐增大,在150~100℃范围内达最大值,然后下降;在风冷过程中,表面换热系数值先急剧增大,当温度下降到500℃后增速明显减慢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号