首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
付宇明  田振国  郑丽娟 《工程力学》2006,23(7):180-184,164
选择带有半埋藏环形裂纹的金属凹模为研究对象,通过金属凹模内外环面均匀通入强脉冲电流,应用电磁热效应实现了金属凹模中环形裂纹的止裂。采用复变函数的方法求解了脉冲电流放电瞬间裂纹尖端附近的温度场。由于脉冲电流放电瞬间,裂尖处电流绕流的热集中效应,在金属凹模内部,环形裂纹尖端金属的温升超过熔点,金属熔化,在金属凹模内部沿着环形裂纹尖端形成堆焊,致使环形裂纹尖端的曲率半径瞬间增大,阻止了干线裂纹源的开裂趋势。  相似文献   

2.
为了从微观角度探索γ-TiAl合金中特定晶向的裂纹扩展机理,研究了γ-TiAl合金中[111]晶向微裂纹扩展的过程及其断裂机理。首先在单晶γ-TiAl合金中预置[111]晶向的微裂纹,然后通过分子动力学方法模拟该裂纹的扩展过程,最终分析了裂尖原子组态变化、微裂纹扩展路径以及应力-应变情况。研究表明,该晶向的微裂纹不是沿直线扩展,而是启裂时裂尖发生偏转,表现出明显的取向效应;微裂纹以裂尖发射滑移位错以及裂尖上形成孪晶的方式进行扩展;受边界的影响,微裂纹扩展到一定阶段会在边界位错堆积处萌生子裂纹,且扩展机制与主裂纹类似;在两个裂纹尖端发射滑移位错的相互作用下,在主裂尖前端再次萌生子裂纹,最终主、子裂纹相连导致断裂;微裂纹扩展过程中的应力分布主要集中于裂尖和扩展过程中形成的孪晶面上,并且随着微裂纹的扩展,裂尖应力值随时间的增大而减小。  相似文献   

3.
本文利用复变函数方法,借助于Riemann-Schwarz延拓技术和保形映照方法,研究了渗透性边界条件下周期共线反平面裂纹问题,获得了解的表达式,得到了力学和电学强度因子。结果表明在裂纹尖端应力和电位移的奇异性都与远场作用的应力载荷和裂纹长度有关,其中应力的奇异性与材料无关,电位移的奇异性则与材料有关,电载荷对裂尖的奇异性没有影响。最后,运用数值算例,给出周期裂纹间的干涉效应和裂纹的尺度效应。  相似文献   

4.
采用变截面霍普金森压杆(SHPB),对高速冲击荷载下混凝土的断裂特性和裂纹演化进程进行了研究。对含复合型裂纹直切槽平台巴西圆盘(CSTFBD)进行劈裂拉伸试验,并结合理论研究了不同水灰比、不同应变率、不同预设裂纹长度和倾角对裂纹分布及断裂韧性的影响;采用扩展有限单元法(XFEM)模拟了具有不同预设裂纹倾角试件的开裂进程,得出开裂过程中试件内部的应力分布情况。结果表明,复合断裂韧性比对预制裂纹倾角的变化敏感,与裂纹长度和倾角呈负相关,而与应变率无关;次生裂纹的开裂并非发生在预设裂尖处,且裂纹倾角越大,裂尖应力集中越小、主裂纹发展越缓慢。  相似文献   

5.
胡宇达  白象忠 《工程力学》2000,17(3):105-108,132
给出了载流无限大薄板在形成裂纹的瞬间,尖端区域附近的电流密度以及由于集中效应而产生的焦耳热源功率表达式。在此基础上,通过对热传导方程求解温度场,得到了裂纹尖端区域的温度表达式.通过算例分析证实了:在电磁场作用瞬间,由于裂尖处的热集中效应,能够使其在附近一定范围内熔化形成微小焊口.从而可达到阻止裂纹扩展的目的。  相似文献   

6.
唐雪松 《振动与冲击》2011,30(3):100-108
研究裂纹动态扩展中宏微观因素相互作用机制与微观裂尖区的钝化效应。平面拉伸状态下,宏观主裂纹以恒定速度运动。通过一个介观约束应力过渡区,将宏观主裂纹与微观裂尖区相连接,由此建立了一个宏微观双尺度运动裂纹模型。应用弹性动力学与复变函数理论,分别在宏观与微观尺度下对该模型进行解析求解,获得了解析解。通过裂纹张开位移从宏观到微观的连续性条件与宏微观应力场协调条件,将两个不同尺度下的解相耦合,获得了计算宏微观损伤区特征长度的显式表达式。研究表明,运动裂纹的宏观应力场仍具有通常的r&;#61485;1/2的奇异性。由于微观裂尖的钝化,微观应力场奇异性的阶次有所降低,与宏观应力场相比具有弱奇异性。双尺度运动裂纹模型中,可允许裂纹运动速度达到剪切波速,解除了经典运动裂纹理论中裂纹速度不能超过Rayleigh波速的限制。数值结果表明,介观损伤过渡区与裂尖微观损伤区尺寸,及裂纹张开位移等,与裂纹运动速度、材料性质、约束应力比、裂尖钝化角度等因素有关。  相似文献   

7.
扩展有限元法利用了非网格重剖分技术,但需要基于裂尖解析解构造复杂的插值基函数,计算精度受网格疏密和插值基函数等因素影响。比例边界有限元法则在求解无限域和裂尖奇异性问题优势明显,两者衔接于有限元法理论内,可建立一种结合二者优势的断裂耦合数值模型。该文从虚功原理出发,利用位移协调与力平衡机制,提出了一种断裂计算的新方法X-SBFEM,达到了扩展有限元模拟裂纹主体、比例边界有限元模拟裂尖的目的。在数值算例中,通过边裂纹和混合型裂纹的应力强度因子计算,并与理论解对比,验证了该方法的准确性和有效性。  相似文献   

8.
采用动态焦散线实验和ABAQUS数值模拟,对束状炮孔柱部区域和端部区域节理处裂纹的动态断裂特性进行了研究。结果表明,在炮孔柱部区域,初始爆炸应力波在张开节理处产生透射波与绕射波并与其相互叠加,节理端部产生拉剪应力集中形成翼裂纹,垂直于节理面起裂扩展。且节理近端翼裂纹扩展速度、扩展长度和裂纹尖端应力强度因子较节理远端处翼裂纹的相应值大。而次生裂纹是爆炸应力波在试件边界处产生的反射拉伸波与倾斜张开节理相互作用起裂的,并沿水平方向扩展。远端次生裂纹的起裂韧度约为翼裂纹的0.5倍,且由于反射波较弱,次生裂纹的扩展长度远小于翼裂纹。炮孔端部区域翼裂纹和次生裂纹是在倾斜张开节理处的反射拉伸波和绕射波与倾斜张开节理的相互作用下先后起裂的,翼裂纹偏向炮孔方向起裂,并向相反方向扩展,而次生裂纹近似沿着爆炸应力波的传播方向扩展。  相似文献   

9.
小裂纹条件下的环境致裂是准确预测核电关键构件在役寿命和确定检修周期的重要技术环节,但是目前对小裂纹下的环境致裂扩展少有研究。本文以核电关键材料304作为研究对象,利用断裂力学弹塑性有限元分析研究稳态下小裂纹裂尖的力学特性,研究结果表明,线弹性条件下裂纹长度对裂尖应力应变场影响不大,但是在弹塑性条件下,裂纹长度小于约1mm之后,裂纹长度减小时J积分和CTOD都明显增大,甚至远大于长裂纹条件下的参考值,此时再使用J积分和CTOD来描述裂尖强度会有很大偏差。研究工作对后续研究及工程应用有一定的参考价值。  相似文献   

10.
研究了恒定ΔK条件下,单次拉伸超载对A537钢疲劳裂纹扩展速率的影响,并利用激光散斑技术原位研究超载前后的裂尖应变场,裂纹闭合效应。结果表明:超载后裂纹闭合效应呈增强趋势,裂尖应变呈下降趋势。伸超载有阻滞裂纹扩展的作用。  相似文献   

11.
A boundary element technique, based on a pure displacement discontinuity formulation, is presented to solve general problems of interaction between cracks. The procedure allows detailed information and high precision at the expense of a reasonable computational effort. The comparisons with exact solutions and numerical ones for elementary case show a good performance of the method in the case of strong interacting cracks too. The interaction of a main crack with some microcrack arrays is studied in terms of amplification and shielding of the SIF at the main crack tip.The analysis of the results shows that, while shielding can be considered a short range phenomenon, amplification has a wider range involving more distant microcracks; this fact fits well with some experimental investigations given in the literature.  相似文献   

12.
This paper investigates the temperature dependence of the material length scale in the conventional mechanism‐based strain gradient (CMSG) plasticity theory. The work reported here also examines the plastic strain gradient effect on the opening displacement near a sharp crack tip. The study examines the mechanical properties of two typical structural steels (S355 and S690) in onshore and offshore structures at two different temperatures (20 and 300 °C) through both the uniaxial tension test and the indentation test. The CMSG‐based finite element analysis then confirms a constant material length scale for these two steels at the two tested temperatures, despite the apparent temperature dependence of the macroscopic material parameters measured from the tension test. Using the calibrated material length scale, the subsequent numerical study demonstrates that the magnitude of the near‐tip crack opening displacement computed by the CMSG theory remains significantly lower than that computed from the classical plasticity.  相似文献   

13.
Sunil Bhat  S. Narayanan 《Acta Mechanica》2011,216(1-4):259-279
The stress field around the crack tip near an elastically matched but strength-mismatched interface body in a bimetallic system is influenced when the crack tip yield or cohesive zone spreads to the interface body. The concept of crack tip stress intensity parameter, K tip, is therefore employed in fracture analysis of the bimetallic body. A computational model to determine K tip is reviewed in this paper. The model, based upon i) Westergaard??s complex potentials coupled with Kolosov?CMuskhelishvili??s relations between a crack tip stress field and complex potentials and ii) Dugdale??s representation of the cohesive zone clearly indicates shielding or amplifying effects of strength mismatch across the interface, depending upon the direction of the strength gradient, over the crack tip. The model is successfully validated by conducting series of high cycle fatigue tests over Mode I cracks advancing towards various strength-mismatched interfaces in bimetallic compact tension specimens prepared by electron beam welding of elastically identical weak ASTM 4340 alloy and strong MDN 250 maraging steels.  相似文献   

14.
The mechanical behaviour of small fatigue cracks is investigated for a low, medium and high strength material. At first an elastic consideration is performed which give a good impression how the stress fields change with crack size. In part 2 a full elastic-plastic analysis of short cracks is performed using a new numerical scheme to simulate the growth of shear bands emanating from the crack tip. The influence of material and loading paramters as well as of the crack size on the plastic crack tip opening displacement is discussed. It is also investigated how it is possible to get a conservative estimate of the crack tip deformation at small cracks.  相似文献   

15.
The nucleation and growth of domains is investigated near a stationary crack tip in a single crystal of ferroelectric material. The phase-field approach, applying the material polarization as the order parameter, is used as the theoretical modeling framework and the finite element method is used for the numerical solution technique. The electromechanical form of the J-integral is appropriately modified to account for the polarization gradient energy terms, and analyzed to illustrate the amount of shielding, or lack thereof, due to domain switching at the crack tip. It is shown that the nucleation of domains near the crack tip due to applied electric field is affected by applied stress. However, the crack-tip energy release rate can change significantly between the instant of domain nucleation and the final equilibrium domain configuration. Implications of these results for ferroelectric single crystal fracture criteria are discussed.  相似文献   

16.
R R Bhargava  S C Agrawal 《Sadhana》1997,22(5):637-647
The problem investigated is of an elastic-perfectly plastic infinite plate containing two equal collinear and symmetrically situated straight cracks. The plate is subjected to loads at infinity inducing mode I type deformations at the rims of the cracks. Consequently, plastic zones are formed ahead of the tips of the cracks. The loads at infinity are increased to a limit such that the plastic zones formed at the neighbouring interior tips of the cracks get coalesced. The plastic zones developed at the tips of the cracks are closed by applying normal cohesive quadratically varying stress distribution over their rims. The opening of the cracks is consequently arrested. Complex variable technique is used in conjugation with Dugdale’s hypothesis to obtain analytical solutions. Closed form analytical expressions are derived for calculating plastic zone size and crack opening displacement. An illustrative numerical example is discussed to study the qualitative behaviour of the loads required to arrest the cracks from opening with respect to parameters viz. crack length, plastic zone length and inter-crack distance. Crack opening displacement at the tip of the crack is also studied against these parameters.  相似文献   

17.
Interaction of a crack with certain microcrack arrays   总被引:5,自引:0,他引:5  
Interaction of a crack with microcracks (modelling “damage”) can significantly alter the stress concentration at the crack tip. Certain important effects of interaction—shielding effect (“toughening by microcracking”), amplification effect, influence of the orientations of microcracking and irregularities in its patterns, change of the character of interaction (shielding to amplification and vice versa) with change of the mode of loading, etc.—are demonstrated on several microcrack systems. It appears that these relatively simple systems exhibit the essential features of the crack-damage interactions. Consideration is based on the method of analysis of elastic solids with many cracks proposed recently [Kachanov, Int. J. Fracture 28, R11–R19 (1985); Kachanov, Int. J. Solids Structures (in press)] and briefly presented here.  相似文献   

18.
It is well known that microcracking in brittle materials results in a reduction of the stress intensity factor (SIF) and energy release rate (ERR). The reduced SIF or ERR represents crack tip shielding which is of significant interest to micromechanics and material science researchers. However, the effect of microcracking on the SIF and ERR is a complicated subject even for isotropic homogeneous materials, and becomes much more formidable in case of interface cracks in bonded dissimilar solids. To unravel the micromechanics of interface crack tip shielding in bonded dissimilar anisotropic solids, an interface crack interacting with arbitrarily oriented subinterface microcracks in bonded dissimilar anisotropic materials is studied. After deducing the fundamental solutions for a subinterface crack under concentrated normal and tangential tractions, the present interaction problem is reduced to a system of integral equations which is then solved numerically. A J‐integral analysis is then performed with special attention focused on the J2‐integral in a local coordinate system attached to the microcracks. Theoretical and numerical results reassert the conservation law of the J‐integral derived for isotropic materials 1 , 2 also to be valid for bonded dissimilar anisotropic materials. It is further concluded that there is a wastage when the remote J‐integral transmits across the microcracking zone from infinity to the interface macrocrack tip. In order to highlight the influence of microstructure on the interfacial crack tip stress field, the crack tip SIF and ERR in several typical cases are presented. It is interesting to note that the Mode I SIF at the interface crack tip is quite different from the ERR in bonded dissimilar anisotropic materials.  相似文献   

19.
In this paper, the near-threshold fatigue behavior of physically through-thickness short cracks and of long cracks in a low alloy steel is investigated by experiments in ambient air. Physically through-thickness short fatigue cracks are created by gradually removing the plastic wake of long cracks in compact tension specimens. The crack closure is systematically measured using the compliance variation technique with numerical data acquisition and filtering for accurate detection of the stress intensity factor (SIF) at the crack opening. Based on the experimental results, the nominal threshold SIF range is shown to be dependent on the crack length and the characteristic of the crack wake which is strongly dependent on the loading history. The effective threshold SIF range and the relation between the crack propagation rate and the effective SIF range after the crack closure correction are shown to be independent on crack length and loading history. The shielding effect of the crack closure is shown to be related to the wake length and load history. The effective threshold SIF range and the relationship between the crack growth rate and the effective SIF range appear to be unique for this material in ambient air. These properties can be considered as specific fatigue properties of the couple material/ambient air environment.  相似文献   

20.
对于界面断裂的三维编织CMC,其断裂混合度Ψ对材料的断裂韧性影响显著。尽管由于一个不确定的参量——断裂特征长度,界面断裂混合度几乎难以确定,但是与界面断裂混合度相关的裂纹尖端断裂混合度Ψtip可以唯一确定。这样,就可以用裂纹尖端断裂混合度Ψtip研究三维编织CMC的断裂韧性。本文通过数值方法分析了倾斜角度、界面层厚度与混合度的关系,进一步研究了三维编织CMC的裂纹扩展路径对于裂尖混合度的影响,为材料断裂韧性的优化设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号