首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel organic–inorganic hybrid films were synthesised through the reaction of epoxidised castor oil (ECO) with γ-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethoxysilane (TEOS). The amounts of GPTMS employed were sufficient to react with 25, 50 or 75% of the epoxy groups present in the ECO, whilst the mass proportions of ECO to TEOS varied from 90:10 to 70:30. Films were pre-cured at room temperature under an inert atmosphere, and subsequently submitted to thermal curing. Macro and microscopic properties of the films, including adhesion, hardness, swelling in toluene, microstructure (scanning electron microscopy) and thermal properties were determined as a function of the proportion of organic to inorganic precursor. Morphologic studies showed that the hybrid films were microscopically homogeneous when lower proportions of inorganic precursors were employed. Hardness and tensile strength increased, and swelling in toluene decreased, with the increase in the concentration of inorganic precursors. Good adhesion of the films to an aluminium surface was observed throughout the hybrid series.  相似文献   

2.
Two series of organic–inorganic hybrid films were prepared from epoxidised castor oil (ECO) and the inorganic precursor 3-aminopropyltriethoxysilane (APTES), and the combination of APTES with tetraethoxysilane (TEOS) with different organic to inorganic proportions. Films were pre-cured at room temperature under inert atmosphere and subsequently submitted to thermal curing. The macro- and microscopic properties of the films, including adhesion, hardness, microstructure and thermal properties, were determined as a function of the proportion of ECO to inorganic precursors. Morphologic studies showed that the hybrid films were microscopically homogeneous. The hardness and tensile strength of the films increased with increased concentrations of inorganic precursor. All of the films exhibited good adhesion to an aluminium surface and worked as an efficient barrier against corrosion.  相似文献   

3.
Two series of organic–inorganic hybrid films were prepared from epoxidized castor oil (ECO) and the inorganic precursor titanium(IV) isopropoxide (TIP), combined with silicon precursors, either 3-aminopropyltriethoxysilane (APTES) or tetraethoxysilane (TEOS) with different organic to inorganic proportions. Films were pre-cured at room temperature under an inert atmosphere and subsequently submitted to thermal curing. The macro- and microscopic properties of the films, including adhesion, hardness, microstructure (SEM) and thermal properties, were determined as a function of the proportion of ECO to inorganic precursors. Morphological studies showed that the hybrid films were microscopically homogeneous. The addition of TIP decreases substantially the curing time. The hardness and tensile strength of the films increased with increased concentration of inorganic precursor. The combination of the silicon-rich inorganic precursors with TIP improved substantially the mechanical strength of the films. All of the films exhibited good adhesion to the aluminum surface. Aluminum coated with the films and submitted to intensive corrosion test presented excellent protection.  相似文献   

4.
A novel hybrid diol (HD) crosslinker has been synthesized with hydrolyzable –Si–OR groups from 3-amino propyl trimethoxy silane and 3-glycidoxy propyl trimethoxy silane. Its chemical structure was confirmed by Fourier transform infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopy to introduce it as a crosslinker in the castor oil, a renewable resource, to develop functional organic inorganic hybrid coatings. A series of castor oil-based organic–inorganic hybrid materials were prepared from castor oil, isophorone diisocyanate, and the different weight percentages of synthesized HD. Dynamic mechanical thermal analysis, thermogravimetric analysis, differential scanning calorimetry, and the universal testing machine were employed to characterize the hybrid films. The measured properties were found to be strongly influenced by the weight ratio of HD to the castor oil-based polyurethanes. The glass transition temperatures (T g) for the cured hybrid films were found to be 26–72°C. Antibacterial activity, in vitro hydrolytic degradation, and swelling properties of the hybrid films have been studied. The cured hybrid films exhibited excellent antibacterial activity, which was enhanced with addition of the HD. The alkoxy silane-crosslinked castor oil-based coatings have shown better mechanical and viscoelastic properties in comparison to the control (uncrosslinked castor oil-based polyurethane-urea) coatings. The results showed that the weight percent of the HD is the main factor that controls the thermal, antimicrobial, mechanical, swelling, and degradation properties of these hybrid films.  相似文献   

5.
In this work, a number of urethane-modified polyesteramide (UmPEA) films were developed from mahua and castor oils, which are renewable resources. Mahua oil and diethanolamine were reacted to form mahua fattyamide, which was then reacted with itaconic acid to prepare polyesteramide. In order to make the UmPEA films, different proportions of polyesteramide and castor oil as polyols were reacted with isophoronediisocyanate. The UmPEA films showed excellent chemical resistance against water, acid, alkali, salt, and organic solvents and were found insoluble in common organic solvents. The thermal stability of the UmPEA films was investigated through TGA and DSC analyses, and their Tg values are between 69.1°C and 56.1°C for UmPEA films, which indicated that a higher content of CO enhances the Tg, and it was also found that the films were highly stable up to 230°C. The Ea values [224 kJ mol−1 (Tp1) and 226 kJ mol−1 (Tp2)] indicate that the castor oil enhances the thermal stability of the films due to better cross-linking density occurring through the high hydroxyl groups of CO as the polyol which also showed better flame retardancy in the synthesized UmPEA films. Our findings demonstrate that the newly developed UmPEA films can be potent coating materials.  相似文献   

6.
Moisture-cured polyurethane films have been prepared by reaction between toluene diisocyanate and castor oil or derivatives such as castor oil diethanol amide, castor oil monoglyceride, ethylene glycol monoricinoleate, and propylene glycol monoricinoleate. Effect of acetylated castor oil as an internal plasticizer on the resulting urethane films has been studied. Catalytic effect of 3-5% triethanol amine on curing of plasticized films has been noted. Plasticized polyurethane films show good tensile strength (105-550 kg/cm2) and elongation (15-215%) properties, having high melting point (210-272 C) and good resistance to solvents and chemicals.  相似文献   

7.
Esters of castor oil and hydrogenated castor oil were prepared with C6, C12, C16, C18 fatty acids, using tetra‐n‐butyl titanate as a catalyst and n‐butyl benzene as a water entrainer. Physical properties such as melting point, refractive index, viscosity, and specific gravity of these esters were measured. Slip melting points of the esters were very low in both cases. These esters did not crystallize even at low temperature. The highest slip melting point obtained was 21 °C with stearoyl hydrogenated castor oil ester and lowest slip melting point obtained was —6 °C with hexanoyl castor oil ester.  相似文献   

8.
A novel polyol synthesised from castor oil by aminolysis and a partially blocked toluene–diisocyanate blocked with N,N′-diethyl lactamide was used to prepare an urethane. This was used in different weight proportions to modify epoxy amine adduct to give binders suitable for cathodic electrodeposition. The pigmented composition of these binders based on the iron oxide (natural) and titanium dioxide (rutile) gave coatings with improved performance.  相似文献   

9.
In this contribution, castor oil polyols with functionality of f = 2.7 and f = 2 are used as soft segments (SS) for synthesizing polyurethane elastomers (PUEs) without addition of petroleum-based polyol. The effect of molar ratio of castor oil polyols on structure and properties of PUEs has been investigated by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, X-ray diffraction, tensile, swelling, and water absorption tests. The results reveal that hydrogen bonding mainly exists in hard segments (HSs) and weakens with decreasing the molar percentage of castor oil polyol (f = 2.7) in SS. T g of SS decreases while T g of HS remains constant as molar percentage of castor oil polyol (f = 2.7) decreased. The initial degradation temperatures (T5%) are above 300 °C and independent of the molar ratio of castor oil polyols. However, the temperature at 50% weight loss (T50%) decreases significantly as molar percentage of castor oil polyol (f = 2.7) decreased. Moreover, PUEs exhibit very low water absorption rate, <1%, after immersing in water for 140 h at room temperature. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47309.  相似文献   

10.
As biphasic systems bigels are formed by hydrogels and organogels. Given their characteristics, they have been studied in food, pharmaceutical and cosmetic applications for bioactives delivery. The rheological characteristics and amount used of the individual structured systems influence the final properties; thus, the objective of this work was to evaluate the effect of the proportion of castor oil organogel, the concentration of organogelator, and the storage time in the mechanical and microstructural properties of bigeles. Bigels were prepared from structured castor oil organogels with monoacylglycerides at concentrations of 6% (MOG) and 6.5% (HOG) wt/wt, and hydrogels with 2% wt/wt xanthan gum (HG) at three organogel/hydrogel ratios 15 of 85, 30 of 70, and 45 of 55. Bigels were characterized by optical microscopy with polarized light filter, centrifugal stability, texture, and rheology for 60 days. The increase in the proportion of organogel favors the mechanical response (k, G0, and firmness) of bigels. The high viscosity of castor oil slows down the structuring of organogel droplets, showing an improvement in its mechanical properties after 15 days of its preparation. The increase in the organogelator concentration is significant in the bigels with 30% and 45% proportions of organogel in the rheological tests. By using HOG in the formation of bigels, higher values for G0 and k were obtained, as well as higher centrifugal stability compared with bigels formed from MOG. The rheological and microstructural behavior of bigels can be modified according to their application by varying the proportions of organogel/hydrogel and the concentration of the organogelator.  相似文献   

11.
Summary Methyl esters of castor oil were prepared by saponifying the oil with potassium hydroxide in methanol, splitting the potassium soapsin situ with an excess of hydrochloric acid, and esterifying at room temperature. The esters had hydroxyl values comparable with those of the parent oils. The methyl esters were quantitatively resolved into hydroxy and nonhydroxy esters after reacting with succinic anhydride in toluene. The composition of castor oil was calculated from a) amount of nonhydroxy esters, b) methyl linoleate content of methyl esters determined spectro-photometrically, c) iodine value of the methyl esters determined by the Wijs method at 15–20°C., and d) iodine value of the nonhydroxy esters determined by the Woburn method. This composition was confirmed by the estimation of saturated acids in one sample and dihydroxystearic acid in all. Castor oil was readly hydrogenated with Raney nickel in alcohol at room temperature (30–33°C.) without any hydrogenolysis of the hydroxyl groups. Methyl dihydroxystearate content of the methyl esters of this hydrogenated oil was determined by reaction with 80–100% excess periodic acid at 15–20°C. Part of a thesis submitted for the Ph.D. degree to the University of Bombay.  相似文献   

12.
Hybrid organic–inorganic films were prepared using four different hydroxylated soybean oils (HSO) or epoxidized soybean oil as organic precursor and tetraethyl orthosilicate (TEOS) as inorganic precursor in a mass ratio of HSO:TEOS of 90:10. The films were macroscopically homogeneous and were characterized by swelling and extraction in solvent, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) including energy dispersive spectroscopy (EDX), adhesion and hardness. Their properties varied as a function of the number of OH groups present in the HSO. The best hybrid system was HSOF198/TEOS, with an OH value of 198 mg of KOH/g, which presents lower swelling coefficient, very good adhesion on aluminium surface and good hardness.  相似文献   

13.
Castor oil is the only major natural vegetable oil that contains a hydroxyl group and so it is widely used in many chemical industries, especially in the production of polyurethanes. In this work, castor oil was interesterified with jatropha oil and the product was subsequently reacted with toluene diisocyanate to obtain urethane alkyd. The prepared urethane alkyd was characterized and its properties were determined and compared with those of the conventional (glycerol/jatropha oil) and commercial urethane alkyds. The castor oil/jatropha oil-based urethane alkyd had a lower molecular weight and viscosity, a slightly lower hardness and greatly longer drying time than the conventional and commercial urethane alkyds, but otherwise the film properties were broadly similar, including being very flexible, with an excellent adhesion and high impact resistance. In addition, they also exhibited excellent resistance to water and acid.  相似文献   

14.
The possibility of combining dehydration and isomerization of castor bean oil as a means to obtain CLA as TAG forms was studied. First, dehydration was carried out using various catalysts and reaction parameters. Best results were obtained using phosphoric acid (0.1% w/w) at 280°C for 5 h. Under such conditions, satisfactory proportions of CLA were obtained (54% of total FA) with a majority of 9-cis, 11-trans isomer (61% of total CLA). Other catalysts such as bisulfate-bisulfite, sulfuric acid, tungstic and phosphotungstic acids, or resins and zeolites were also tested. With the exception of resins and zeolites, these catalysts also led to CLA production but in limited amounts in comparison with phosphoric acid. In a second step, an isomerization reaction was carried out to transform the residual nonconjugated linoleic acid also produced during dehydration into CLA. Using Wilkinson catalyst [RhCl(PPh3)3] in ethanol solvent, dehydrated castor bean oil was isomerized in high yields (>98%), allowing a complete disappearance of nonconjugated linoleic acids. The resulting dehydrated/isomerized oil contained more than 87% CLA with the 9-cis, 11-trans isomer being predominant (40% of CLA fraction). Finally, urea fractionation was also applied on dehydrated/isomerized castor bean oil FA to obtain FFA products containing about 93% CLA.  相似文献   

15.
Segmented polyurethane elastomers based on a mixture of castor oil and poly(propylene glycol), 4,4'-diphenylmethane diisocyanate, and 1,4-butanediol were prepared. The ultimate, thermal, dynamic mechanical behavior and morphology were studied. The use of castor oil shifts the main transition region of the soft phase to higher temperatures (the glass transition temperature Tg increases) improves abrasion resistance and the tensile strength. The multifunctionality of castor oil leads to the crosslinking of the soft segments and a decrease of the sol and swelling of elastomers.  相似文献   

16.
蓖麻油聚氨酯-丙烯酸酯复合乳液的合成   总被引:3,自引:1,他引:2       下载免费PDF全文
采用甲基丙烯酸甲酯(MMA)与蓖麻油水性聚氨酯乳液共聚反应制备聚氨酯丙烯酸酯(PUA)复合乳液,研究了蓖麻油水性聚氨酯性能、MMA添加量、引发剂种类和聚合温度对PUA复合乳液及涂膜性能的影响,并应用傅里叶红外光谱(FTIR)测定反应产物的结构.研究发现,用外观半透明或微透明的PU-M分散液制备的PUA乳液及涂膜性能优良.油溶性引发剂(AIBN)比水溶性引发剂(K2S2O8)更适合本体系的乳液聚合.随着MMA含量增大,PUA复合乳液胶粒粒径增大,黏度减小,涂膜光泽度下降,机械性能变好,耐水性增加.合适的MMA含量为体系总固含量的20%~30%.提出了PUA复合乳液胶粒形成及粒径长大机理.  相似文献   

17.
Summary The preparation and properties of two series of castor oil urethane foams, one from castor oil and the other from elaidinized castor oil, were investigated. The first series of foams was made from prepolymers containing 60% of castor oil prepared at increasing temperature levels to vary the degree of crosslinking in the final foams. These foams had lower tensile strengths than observed for a previously prepared foam of 60% castor oil and did not show significant differences in water resistance as crosslinking varied. They were increased nearly 100% in compressive strength with increased crosslinking and had very good shrinkage characteristics as values of only 1 to 2% were obtained. A second series of foams was prepared from 50, 60, 70, and 80% of elaidinized castor oil to compare with foams from a similar series from castor oil. This series of foams of 50 to 80% elaidinized castor oil contents was similar in density (1.7 to 6.7 lbs./cu. ft.), had improved shrinkage characteristics (11, 1, 3, and 4%, respectively), showed increased compressive and tensile strengths (up to 12.1 p.s.i. at 50% compression modulus and 34.7 p.s.i. ultimate tensile for the 60% foam formulation), and had better water-resistance properties (411 to 155%vs. 515 to 170% water absorption) than the analogous foams from castor oil. In general, humid aging only slightly affected the values obtained for the foams and was significant in only a few instances,e.g., decreased tensile in the elaidinized castor oil series. Thus increasing crosslinks in the foam apparently did not improve water resistance but did improve shrinkage characteristics in addition to some increased strength properties, as would be anticipated. Foams from elaidinized castor oil, while similar in density and foaming characteristics to analogous foams from castor oil, exhibited less shrinkage and improved water-resistance. Presented at the 50th Annual Meeting of the American Oil Chemists' Society, New Orleans, La., April 20–22, 1959. Ono of the laboratories of the Southern Utilization Research and Development Division, Agricultural Research Service, U. S. Department of Agriculture.  相似文献   

18.
A series of castor oil adducts were synthesized by esterification of castor oil with acid anhydrides: phthalic, maleic and succinic anhydrides. The chemical structure of castor oil and the prepared adducts were characterized by means of IR and 1H NMR spectroscopy. The number‐average and weight‐average molecular weights were measured by gel permeation chromatography. The electrical properties were studied through the permittivity, dielectric loss and conductivity measurements, which are considered to be in the range of electrical insulation. The electrical conductivity, which describes the ionic mobility of the systems, was found to be in the range of 10–9 to 1012 S/cm. This indicates that castor oil and its esters could be used for antistatic applications. The viscosity η and the activation energy Eη, obtained from the dependency of viscosity on temperature using the Arrhenius equation, were found to increase with increasing molecular weight of the system. The effect of different concentrations of castor oil and its esters on the growth activities of the sugar beet pathogens R. solani and S. rolfsii was studied through the determination of percent germination, average length of hyphal extensions, dry mass yield and the production of sclerotia. The obtained data indicate that the esterification of castor oil with anhydrides improves the antifungal activity.  相似文献   

19.
In this study, esterification of castor oil with oleic acid was investigated in view of the reaction kinetics under various conditions. Potassium hydroxide,p-toluenesulfonic acid and tin chloride (SnCl22H2O) were used as catalysts. Reaction was carried out at 200°C, 225°C and 250° C by using equivalent proportions of the reactants. For tin chloride, experimental data fitted the second-order rate equation, while for the other catalysts the obtained data fitted the third-order rate equation.  相似文献   

20.
We developed a new silanized castor oil (MSCO) composed of castor oil and 3-mercaptopropyl trimethoxy silane via thiol-ene coupling (TEC). This MSCO was used as a functional polyol in the preparation of a series of bio-based polyurethane/siloxane (SiPU) hybrid coatings through reactions with different castor-oil-and-isophorone-diisocyanate (IPDI) ratios. The SiPU films exhibited better mechanical and thermal properties than castor oil-based coatings without MSCO. The cross-linked structure of the obtained hybrid materials was confirmed by Fourier transform infrared (FTIR) spectroscopy, whereas the morphologies and surface roughness of the hybrid-coating films were observed by scanning electron microscopy (SEM). A slight phase separation was observed in the obtained hybrid materials. The introduction of a silica network can reduce the surface energy of the obtained hybrid materials. The thermal stability of the obtained hybrid materials increases with increasing Si content. The obtained hybrid materials can be applied in coatings as a result of these characteristics, and this study provides an alternative method of preparing hybrid materials from renewable sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号