首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nanoimprint lithography has the potential to cost efficiently realize patterns with extremely narrow linewidth over a large area. A significant challenge to achieving this target is the fabrication of nanoimprint templates. The cost and writing time of conventional electron beam lithography for direct writing of the templates rapidly increases as the patterned area increases and the linewidth decreases. We have developed a novel process for creating narrow linewidth nanopatterns. This process is based on conformal deposition of thin films on seed nanopatterns. We have demonstrated the process by fabricating nanosized loops and lines. The linewidth of the structures can be tuned precisely, and in our experiments it could be reduced to 20?nm. The closed loop structures are interesting, since this geometry is crucially important in many leading edge research fields such as negative refractive index materials, ultrahigh density memory applications and quantum rings. The fabricated template was subsequently used as a template in soft-stamp UV nanoimprint lithography to successfully replicate the structures in UV-curable resist.  相似文献   

3.
Electron beam lithography (EBL) patterning of poly(methylmethacrylate) (PMMA) is a versatile tool for defining molecular structures on the sub-10-nm scale. We demonstrate lithographic resolution to about 5 nm using a cold-development technique. Liftoff of sub-10-nm Au nanoparticles and metal lines proves that cold development completely clears the PMMA residue on the exposed areas. Molecular liftoff is performed to pattern DNA rafts with high fidelity at linewidths of about 100 nm. High-resolution EBL and molecular liftoff can be applied to pattern Creutz-Taube molecules on the scale of a few nanometers for quantum-dot cellular automata.  相似文献   

4.
In this study, we present a spacer patterning technology for sub-30 nm gate template which is used for nano-scale MOSFETs fabrication. A spacer patterning technology using a poly-silicon micro-feature and a chemical vapor deposition (CVD) SiO2 spacer has been developed, and the sub-30 nm structures by conventional dry etching and chemical mechanical polishing are demonstrated. The minimum-sized features are defined not by the photolithography but by the CVD film thickness. Therefore, this technology yields a large-area template with critical dimension of minimum-sized features much smaller than that achieved by optical lithography.  相似文献   

5.
A novel strategy for fabricating nanoimprint templates with sub-10 nm patterns is demonstrated by combining electron beam lithography and atomic layer deposition. Nanostructures are replicated by step-and-repeat nanoimprint lithography and successfully transferred into functional material with high fidelity. The process extends the capacity of step-and-repeat nanoimprint lithography as a single digit nanofabrication method. Using the ALD process for feature shrinkage, we identify a size dependent deposition rate.  相似文献   

6.
A lithography technique that combines laser interference lithography (LIL) and photolithography, which can be a valuable technique for the low cost production of microscale and nanoscale hybrid mask molds, is proposed. LIL is a maskless process which allows the production of periodic nanoscale structures quickly, uniformly, and over large areas. A 257 nm wavelength Ar-Ion laser is utilized for the LIL process incorporating a Lloyd's mirror one beam inteferometer. By combining LIL with photolithography, the non-selective patterning limitation of LIL are explored and the design and development of a hybrid mask mold for nanoimprint lithography process, with uniform two-dimensional nanoscale patterns are presented. Polydimethylsiloxane is applied on the mold to fabricate a replica of the stamp. Through nanoimprint lithography using the manufactured replica, successful transfer of the patterns is achieved, and selective nanoscale patterning is confirmed with pattern sizes of around 180 nm and pattern aspect ratio of around 1.44:1.  相似文献   

7.
We demonstrate for the first time a fast and easy nanoimprint lithography (NIL) based stacking process of negative index structures like fishnet and Swiss-cross metamaterials. The process takes a few seconds, is cheap and produces three-dimensional (3D) negative index materials (NIMs) on a large area which is suitable for mass production. It can be performed on all common substrates even on flexible plastic foils. This work is therefore an important step toward novel and breakthrough applications of NIMs such as cloaking devices, perfect lenses and magnification of objects using NIM prisms. The optical properties of the fabricated samples were measured by means of transmission and reflection spectroscopy. From the measured data we retrieved the effective refractive index which is shown to be negative for a wavelength around 1.8 μm for the fishnet metamaterial while the Swiss-cross metamaterial samples show a distinct resonance at wavelength around 1.4 μm.  相似文献   

8.
Hu Z  Baralia G  Bayot V  Gohy JF  Jonas AM 《Nano letters》2005,5(9):1738-1743
Polymer crystallization is notoriously difficult to control. Here, we demonstrate that the orientation of polymer crystals can be fully controlled at the nanoscale by using nanoimprint lithography (NIL) with molds bearing nanotrenches to shape thin films of poly(vinylidene fluoride). This unprecedented control is due to the thermomechanical history experienced by the polymer during embossing, to the shift of the nucleation mechanism from heterogeneous to homogeneous in confined regions of the mold, and to the constraining of the fast growth axis along the direction of the trenches. NIL thus appears as an ideal tool to realize smart polymer surfaces where crystal ordering can be tuned locally.  相似文献   

9.
We introduce the concept of wafer bowing to affect nanoimprinting. This approach allows a design that can fit the key imprinting mechanism into a compact module, which we have constructed and demonstrated with an overlay and resolution of <0.5 microm and <10 nm, respectively. In the short term, this wafer bowing approach makes nanoimprint lithography much more accessible to a broad range of researchers. More importantly, this approach eliminates machine movement other than wafer bowing and shortens the mechanical path; these will enable the achievement of excellent patterning and overlay at a much lower cost. In the long term, wafer bowing is extensible to step-and-repeat printing for volume manufacturing.  相似文献   

10.
High density metal cross bars at 17 nm half-pitch were fabricated by nanoimprint lithography. Utilizing the superlattice nanowire pattern transfer technique, a 300-layer GaAs/AlGaAs superlattice was employed to produce an array of 150 Si nanowires (15 nm wide at 34 nm pitch) as an imprinting mold. A successful reproduction of the Si nanowire pattern was demonstrated. Furthermore, a cross-bar platinum nanowire array with a cell density of approximately 100 Gbit/cm(2) was fabricated by two consecutive imprinting processes.  相似文献   

11.
Bublat T  Goll D 《Nanotechnology》2011,22(31):315301
Large-area hard magnetic L1(0)-FePt nanopatterns with out-of-plane texture were fabricated by using a top-down approach. For the fabrication process, ultraviolet nanoimprint lithography (UV-NIL) in combination with inductively coupled plasma reactive Ar-ion etching was used. By this technique a continuous L1(0)-Fe(51)Pt(49) film was nanostructured into a regular arrangement of nanodots over an area of 4 mm(2). The dot dimension and distribution was specified by the stamp, resulting in a dot size of 60 nm and a periodicity of 150 nm. For the large-scale L1(0)-FePt nanopatterns, huge coercivities up to 4.31 T could be achieved. By means of magnetic force microscopy it could be verified that the nanodots were magnetically decoupled from each other and occurred in the single-domain state with perpendicular magnetization.  相似文献   

12.
Large number density Pt nanowires with typical dimensions of 12 microm x 20 nm x 5 nm (length x width x height) are fabricated on planar oxide supports. First sub-20 nm single crystalline silicon nanowires are fabricated by size reduction lithography, and then the Si nanowire pattern is replicated to produce a large number of Pt nanowires by nanoimprint lithography. The width and height of the Pt nanowires are uniform and are controlled with nanometer precision. The nanowire number density is 4 x 10(4) cm(-1), resulting in a Pt surface area larger than 2 cm(2) on a 5 x 5 cm(2) oxide substrate. Bimodal nanowires with different width have been generated by using a Pt shadow deposition technique. Using this technique, alternating 10 and 19 nm wide nanowires are produced.  相似文献   

13.
We have discovered a micro/nanopatterning technique based on the patterning of a PDMS membrane/film, which involves bonding a PDMS structure/stamp (that has the desired patterns) to a PDMS film. The technique, which we call "bond-detach lithography", was demonstrated (in conjunction with other microfabrication techniques) by transferring several micro- and nanoscale patterns onto a variety of substrates. Bond-detach lithography is a parallel process technique in which a master mold can be used many times, and is particularly simple and inexpensive.  相似文献   

14.
Nanopatterns on titanium may enhance endosseous implant biofunctionality. To enable biological studies to prove this hypothesis, we developed a scalable method of fabricating nanogrooved titanium substrates. We defined nanogrooves by nanoimprint lithography (NIL) and a subsequent pattern transfer to the surface of ASTM grade 2 bulk titanium applying a soft-mask for chlorine-based reactive ion etching (RIE). With respect to direct write lithographic techniques the method introduced here is fast and capable of delivering uniformly patterned areas of at least 4 cm(2). A dedicated silicon nanostamp process has been designed to generate the required thickness of the soft-mask for the NIL-RIE pattern transfer. Stamps with pitch sizes from 1000 nm down to 300 nm were fabricated using laser interference lithography (LIL) and deep cryogenic silicon RIE. Although silicon nanomachining was proven to produce smaller pitch sizes of 200 nm and 150 nm respectively, successful pattern transfer to titanium was only possible down to a pitch of 300 nm. Hence, the smallest nanogrooves have a width of 140 nm. An x-ray photoelectron spectroscopy study showed that only very few contaminations arise from the fabrication process and a cytotoxicity assay on the nanopatterned surfaces confirmed that the obtained nanogrooved titanium specimens are suitable for in vivo studies in implantology research.  相似文献   

15.
In this paper, a simple method is demonstrated for fabricating periodic metal nanowires based on the unconventional nanoimprint lithography (NIL) technique. Using this method, sub-100 nm metal nanowires with the rectangular cross-section are fabricated with microscale stamp. Furthermore, the metal nanowires with different widths and heights can be generated by adjusting the imprinting parameters with the same stamp. The metal nanowires prepared with this method can be used for chemical sensing, such as ammonia sensing, and it may have applications in optical signal processing.  相似文献   

16.
Dopamine is one of the most important catecholamine neurotransmitter in the nucleus accumbens of wide variety of animals, including humans. In this study, silicon nanowire FET device was fabricated by UV-assisted NIL method and dopamine was successfully measured by conductance versus time characteristics within 10 pM to 100 nM.  相似文献   

17.
18.
Yoo HW  Jung JM  Lee SK  Jung HT 《Nanotechnology》2011,22(9):095304
Silver has been widely used for optical sensing and imaging applications which benefit from localized surface plasmon resonance (LSPR) in a nanoscale configuration. Many attempts have been made to fabricate and control silver nanostructures in order to improve the high performance in sensing and other applications. However, a fatal mechanical weakness of silver and a lack of durability in oxygen-rich conditions have disrupted the manufacturing of reproducible nanostructures by the top-down lithography approach. In this study, we suggest a steady fabrication strategy to obtain highly ordered silver nanopatterns that are able to provide tunable LSPR characteristics. By using a protecting layer of platinum on a silver surface in the lithography process, we successfully obtained large-area (2.7 × 2.7 mm(2)) silver nanopatterns with high reproducibility. This large-area silver nanopattern was capable of enhancing the low concentration of a Cy3 fluorescence signal (~10(-10) M) which was labeled with DNA oligomers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号