共查询到16条相似文献,搜索用时 64 毫秒
1.
2.
本文对Hilbert-Huang变换(Hilbert-Huang Transform)理论做了仿真研究,并通过仿真实验对非平稳信号作经验模式分解(Empirical Mode Decomposition),得到它的固有模态函数(Intrinsic Mode Function)分量;对各个分量作Hilbert变换,得到瞬时频率,并构造希尔伯特谱-时间-频率的时频分布图。通过与短时傅立叶变换(Short Time Fourier Transform)、小波变换(Wavelet Transform)的分析比较,Hilbert-Huang变换方法更能反应原始数据的固有特性,有更好的时频聚集性,更适用于对突变信号和非平稳信号的处理。 相似文献
3.
语音信号是一种典型的非平稳信号,其特性及表征本质特征的参数均是随时间变化的,而时频分析是分析时变谱的有力工具,Hilbert-Huang变换是一种新型的具有自适应性的时频分析方法,对于非线性、非平稳信号有清晰的物理意义,通过HHT变换,能够得到信号的时间-频率-振幅三维分布特征。分析了HHT算法的原理,采用了合适的端点效应处理方法提高了EMD的分解精度,通过仿真实验得到了语音信号更加精细的时频结构,并与STFT、WVD及Choi-Williams分布进行了对比,显示了HHT算法的优越性。 相似文献
4.
6.
提出了一种新的ECG信号降噪方法.该方法以Hilbert-Huang变换(HHT)和阈值降噪方法为核心,将经验模态分解(EMD)分解出的各层固有模态函数(IMF)分为噪声成分起主导作用层和有用信号起主导作用层.对噪声成分起主导作用层采用Donoho等人提出的阈值估计法,对有用信号起主导作用层的噪声水平通过高频层的能量与平均周期的乘积来确定.讨论了噪声成分起主导作用层和有用信号起主导作用层的区分判别问题.该方法克服了阈值估计法对有用信号起主导作用层噪声水平估计的较大偏差.经实验验证表明,该方法能有效地滤除ECG信号检测中的几类主要噪声,且失真很小. 相似文献
7.
8.
一种基于Hilbert-Huang变换的基音周期检测新方法 总被引:14,自引:0,他引:14
利用Hilbert-Huang变换对语言信号处理中基于事件的基音周期检测问题提出了一种新的检测方法.该方法利用Huang等人1998年提出的具有高时频分辨能力的Hilbert-Huang变换分析语音信号,并提取其瞬时能量,通过精确定位声门脉冲发生的时刻,从而精确地跟踪基音周期的变化,达到精确检测基音周期的目的.与传统方法相比,其优点主要表现在:(1)不需要对语音信号作短时平稳性假设;(2)检测精度高,适应范围广;(3)具有跟踪基音周期变化的能力;(4)能精确区分清浊音}(5)与传统方法相比,帧长大大增加,因而,在提取连续语音信号的基音轮廓时,用于分帧和拼合的开销大大减少,帧间拼合痕迹小.仿真数据和实际语音信号检测实验均获得了相当精确的检测结果.最后,需要指出的是,Hilbert-Huang变换作为一种新的信号分析方法,被成功地用于提取语音信号的基音周期,这本身是一个有意义的探索,它为拓展Hilbert-Huang变换理论的应用给出了一个新的尝试. 相似文献
9.
10.
在分析Hilbert-Huang 变换算法的基础上,利用此变换对打鼾者的鼾音信号进行了分析。通过经验模态分解把鼾音信号分解为一系列固有模态函数,并分析了各固有模态的频率特征,对各模态的生物学意义进行了描述。对固有模态函数进行了Hilbert变换,建立了鼾音信号的Hilbert谱和边际谱。结果表明Hilbert比小波变换所建立的时频分布具有更好的时频分辨率,解决了时间分辨率和频率分辨率互相影响的问题;从实际看边际谱比傅里叶谱有更准确的物理意义。Hilbert 谱和边际谱为脉搏信号的特征提取和模式识别提供了可靠的依据。 相似文献
11.
提出一种基于Hilbert-Huang变换(HHT)的特征分析方法,该方法将血细胞信号进行经验模态分解和Hilbert变换,提取信号的平均强度、频谱质心和能量贡献率作为频域特征,与信号的时域特征结合,最终完成血细胞特征向量对脉冲信号的统计和识别。仿真实验中,使用HHT的识别算法正确率由模拟电路法的72.33%提高至94.33%;而使用该算法的血细胞分析仪与奥菲MYTHIC 18的可比性合格率达到98.5%,分类相关性系数都在94%以上。实验结果表明,该方法能提高仪器的计数正确度和分类准确性。 相似文献
12.
根据语音信号非平稳非线性的时变特点,提出了一种基于希尔伯特-黄变换的基音周期检测法。该方法不需要对语音信号进行短时平稳假设,能自适应地对信号进行分解,具有很高的时频分辨率(不受Heisenberg不确定原理的制约)。利用短时能量对语音进行清浊音判断,再经过经验模态分解将信号分解为若干固有模态函数,然后对每个固有模态函数进行希尔伯特变换求其瞬时幅值与瞬时频率,根据基音特点对分解得到的固有模态函数加权求和突出基音周期信息,最后采用自相关平方法进行基音检测。实验表明,该方法较传统的基音检测法精度有所提高,且鲁棒性较好。 相似文献
13.
为了对地震属性原始剖面中的细微构造特征或岩性界面进行较好的分辨和验证,一种改进的希尔伯特黄变换算法被采用.该方法首先对信号进行经验模态分解,对分解分量进行希尔伯特频谱分析.采用了最新的图形处理器(graphical processing unit,GPU)技术,将数据转换到GPU上进行并行处理,极大地提高了处理速度.实验结果表明,与基于CPU的方法相比,该方法计算速度提高了4倍左右. 相似文献
14.
薄煤层综采工作面自动化技术综述 总被引:1,自引:1,他引:1
分析了国内外薄煤层综采工作面自动化技术的发展现状,介绍了薄煤层综采工作面自动化系统结构、采煤机自动化控制技术、液压支架电液控制技术、刮板输送机自动化控制技术及采场空间环境可视化监测技术,指出了薄煤层综采工作面自动化技术的发展趋势:采用先进工艺提高采煤机、液压支架等设备的工作可靠性;提高薄煤层综采工作面自动化系统的自动化程度,完善控制系统与故障诊断系统,提高对各种采煤环境的适应能力;从有链牵引向无链牵引及电牵引方向发展;进一步研究综采工作面可视化监测系统。 相似文献
15.
一种非线性非平稳自适应信号处理方法—希尔伯特-黄变换综述:发展与应用 总被引:2,自引:0,他引:2
非线性非平稳信号的分析、处理以及特征提取问题,一直是学术和工程界关注的热点问题之一。为突破传统数据分析方法受线性或者平稳性假设的限制,一种新颖的、高效的非线性、非平稳、自适应的数据分析方法——希尔伯特-黄变换(HHT)被提出。在这篇综述中,我们介绍HHT的基本思想和近期发展,总结起在工程领域中的应用情况,并且列举与之相关的数学问题。 相似文献
16.
HHT方法在不同思维作业脑电信号分析中的应用 总被引:1,自引:0,他引:1
介绍了一种处理非线性、非平稳信号的新方法——HHT的原理及特点,并将其应用于不同思维作业脑电信号分析。实验结果表明,不同思维作业脑电信号经HHT后的HH谱和Hilbert边际谱都差异显著,证明HHT方法对脑电信号处理的可行性。 相似文献