首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xenotransplantation of human cells into immunodeficient mice has been used to develop models of human haemopoiesis and lymphoid cell function. However, the utility of existing mouse strains can be limited by shortened life-spans, spontaneous production of functional lymphocytes with ageing, and residual innate immunity leading to variable levels of engraftment. Mice with a deletion of the common cytokine receptor gamma chain (gamma c) gene have reduced numbers of peripheral T and B lymphocytes, and absent natural killer cell (NK) activity. A genetic cross with a recombinase activating gene 2 (RAG2)-deficient strain produced mice doubly homozygous for the gamma c and RAG2 null alleles (gamma c-/RAG2-). These mice have a stable phenotype characterized by the absence of all T lymphocyte. B lymphocyte and NK cell function. Injection of human B-lymphoblastoid cells resulted in earlier fatal metastatic lymphoproliferative disease than in NOD/LtSz-scid controls. This was particularly evident in animals injected intravenously, possibly because of residual NK activity in NOD/LtSz-scid mice. Levels of engraftment with peripheral-blood-derived human lymphocytes were also increased and associated with higher CD4/CD8 ratios. These findings demonstrate that this new strain of immunodeficient mice has significant advantages over existing strains for engraftment of human cells, and may be useful for study of adoptive immunotherapy and novel therapies for GvHD and HIV infection.  相似文献   

2.
Primary leukemic cells from patients with acute lymphoblastic leukemia (ALL) can be injected intravenously into mice with severe combined immunodeficiency (SCID) to create a model of human leukemia. Leukemic cells disseminate to murine tissues in a clinicopathologic pattern similar to that seen in humans. Thus far, reports of engraftment of lymphoid leukemia in SCID mice have mainly been from patients with B-cell lineage ALL, for which engraftment occurs more frequently with cells from high-risk patients. There are few data on the engraftment of T-cell lineage ALL in SCID mice. Leukemic cells from 19 patients (16 adult and three pediatric) with T-cell lineage ALL were injected into SCID mice, with overt engraftment of 12 cases (63%). Engraftment of leukemia in SCID mice was associated with earlier death due to leukemia of the patient donors (P < .01, log-rank test). The recently developed non-obese diabetic (NOD)/SCID mouse may expand the uses of the SCID model. Cells from the seven patients with T-cell lineage ALL that failed to cause leukemia in SCID mice were injected into NOD/SCID mice. Overt leukemia engraftment was observed in all seven cases. Thus, growth of human T-cell lineage ALL cells in SCID mice was associated with a high-risk patient group. However, this association was not observed when NOD/SCID mice were used, suggesting that this model would no longer predict patients likely to die early of leukemia, but may provide a more realistic system for studying the biology and treatment of the disease.  相似文献   

3.
Time course studies of sublethally irradiated non-obese mice with severe combined immunodeficiency (NOD/ SCID mice) transplanted intravenously with 10(7) human cord blood cells showed a rapid and parallel regeneration of human erythroid, granulopoietic, megakaryopoietic and B-lymphoid progenitors, as well as more primitive subpopulations of CD34+ cells (defined by their multi-lineage in vitro colony-forming ability, coexpression of Thy-1, or functional activity in long-term culture-initiating cell [LTC-IC] assays), in the marrow, spleen and blood. Maximum numbers of human cells were reached within 6 weeks and were then sustained for another 18-20 weeks. 3H-thymidine suicide studies showed all types of in vitro clonogenic human progenitors tested and the human LTC-IC to be proliferating in vitro throughout this period. A 2-week course of injections of human Steel factor, interleukin-3, granulocyte-macrophage colony-stimulating factor and erythropoietin given just prior to assessment of the mice had no effect on any of these human engraftment parameters. 4-6 weeks post-transplant, the marrow of primary NOD/SCID recipients contained human cells that were able to regenerate lymphopoiesis and/or myelopoiesis in secondary irradiated NOD/SCID mice. These findings establish a baseline for the kinetics of engraftment, multi-lineage differentiation and self-renewal of human cord blood stem cells in this xenogeneic transplant model and thus set the stage for future studies of their regulation in vivo.  相似文献   

4.
Based on initial observations of human CD34+ Thy-1+ cells and long-term culture-initiating cells (LTC-IC) in the bone marrow of some sublethally irradiated severe combined immunodeficient (SCID) mice transplanted intravenously with normal human marrow cells, and the subsequent finding that the NOD/LtSz-scid/scid (NOD/SCID) mouse supports higher levels of human cell engraftment, we undertook a series of time course experiments to examine posttransplant changes in the number, tissue distribution, cycling activity, and in vivo differentiation pattern of various human hematopoietic progenitor cell populations in this latter mouse model. These studies showed typical rapid posttransplant recovery curves for human CD34- CD19+ (B-lineage) cells, CD34+ granulopoietic, erythroid, and multilineage colony-forming cells (CFC), LTC-IC, and CD34+ Thy-1+ cells from a small initial population representing <0.1% of the original transplant. The most primitive human cell populations reached maximum values at 5 weeks posttransplant, after which they declined. More mature cell types peaked after another 5 weeks and then declined. A 2-week course of thrice weekly injections of human Steel factor, interleukin (IL)-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), and erythropoietin (administered just before the mice were killed for analysis) did not alter the pace of regeneration of either primitive or mature human hematopoietic cells, or their predominantly granulopoietic and B-lymphoid pattern of differentiation, although a significant enhancing effect on the level of human cell engraftment sustained after 3 months was noted. Cycling studies showed the human CFC present at 4 to 5 weeks posttransplant to be rapidly proliferating even in mice not given human growth factors. However, by 10 weeks and thereafter, only quiescent human CFC were detected; interestingly, even in mice that were given the 2-week course of growth factor injections. These studies indicate the use of this model for future analysis of the properties and in vivo regulation of primitive human hematopoietic cells that possess in vivo repopulating ability.  相似文献   

5.
p53 gene mutations occur in most human cancers and result in an altered protein product that accumulates within the cell. Although the observed endogenous human CTL response to p53 is weak, high-affinity, human p53-specific CTLs have been generated from HLA A2.1 transgenic mice immunized with human CTL epitope peptides. In this study, we examine the ability of HLA A2.1-restricted and human p53-specific CTLs from HLA A2.1 transgenic mice to suppress the growth of p53-overexpressing human tumors in severe combined immunodeficient (SCID) mice. In vitro, murine p53(149-157)-specific CTLs selectively lysed the p53-overexpressing pancreatic carcinoma cell line Panc-1 but did not recognize HLA A2.1- tumor cells or HLA A2.1+ normal human fibroblasts. Furthermore, in vivo, the growth of established human tumor xenografts in SCID mice was significantly reduced and survival was prolonged after the administration of p53-specific CTLs but not after the administration of control CTLs or PBS alone. Following treatment with p53(149-157)-specific CTLs, regressing Panc-1 tumors were infiltrated by the CD8+ CTLs, as demonstrated by immunohistochemistry. These findings suggest that p53(149-157)-specific and HLA A2.1-restricted murine CTLs suppress the growth of established Panc-1 tumors following adoptive transfer into SCID hosts and prolong their survival.  相似文献   

6.
Although in utero transplantation (IUT) has been shown to be effective in treating human severe combined immune deficiency (SCID), the relative merit of IUT as compared with postnatal bone marrow transplantation (BMT) for SCID is unknown. Therefore, comparative studies were undertaken in mice to determine the engraftment outcome in these two settings. Because T-cell depletion (TCD) reduces graft-versus-host disease (GVHD) severity but compromises alloengraftment, studies were performed with TCD or non-TCD BM and GVHD risk was assessed using a tissue scoring system and by the adoptive transfer of splenocytes from engrafted mice into secondary recipients. Non-SCID recipients received pre-BMT irradiation to simulate those circumstances in which conditioning is required for alloengraftment. IUT recipients of non-TCD and especially TCD BM cells in general had higher levels of donor T-cell and myeloid peripheral blood (PB) engraftment than nonconditioned SCID recipients. Increased TCD or non-TCD BM cell numbers in adult SCID recipients resulted in similar levels of PB engraftment as IUT recipients. However, under these conditions, mean GVHD scores were higher than in IUT recipients. The majority of adoptive transfer recipients of splenocytes from IUT recipients were GVHD-free, consistent with the in vitro evidence of tolerance to host alloantigens. Total body irradiation (TBI)-treated mice that had the highest engraftment had evidence of thymic damage as denoted by a higher proportion of thymic and splenic T cells with a memory phenotype as compared with IUT recipients. IUT mice had vigorous thymic reconstitution by 3 weeks of age. Our data indicate that IUT has a number of advantages as compared with postnatal BMT. Future studies examining the fine specificity of immunoreconstitution in IUT versus postnatal BMT are indicated.  相似文献   

7.
The ability of human hematopoietic cells to engraft SCID mice provides a useful model in which to study the efficiency of retroviral gene transfer and expression in primitive stem cells. In this regard, it is necessary to determine whether SCID mice can be engrafted by cycling human hematopoietic progenitor cells. Human cord blood cells from 12 different donors were cultured in vitro for 6 days with interleukin-3 and stem cell factor. Phenotypic analysis indicated that hematopoietic cells were induced to cycle and the number of progenitors was expanded, thus making them targets for retroviral gene transfer. The cells were then transferred to SCID mice. Human hematopoietic progenitor cell engraftment was assessed up to 7 weeks later by growth of human progenitor cells in soft agar. After in vitro culture under conditions used for retroviral gene transfer, human cord blood hematopoietic cells engrafted the bone marrow and spleen of SCID mice. Interestingly, cultured cord blood cells engrafted after intraperitoneal but not after intravenous injection. Furthermore, engraftment of cord blood cells was observed in mice receiving no irradiation before transfer of the human cells, suggesting that competition for space in the marrow is not a limiting factor when these cells have been cultured. Administration of human cytokines after transfer of human cord blood cells to SCID mice was also not required for engraftment. Thus, engraftment of SCID mice with human hematopoietic cells cultured under conditions suitable for gene transfer may provide an in vivo assay for gene transfer to early human hematopoietic progenitor cells.  相似文献   

8.
In vitro studies have provided little consensus on the kinetic abnormality underlying the myeloid expansion of chronic myelogenous leukemia (CML). Transplantation of human CML cells into non-obese diabetic mice with severe immunodeficiency disease (NOD/SCID mice) may therefore be a useful model. A CML cell line (BV173) and peripheral blood cells collected from CML patients in chronic phase (CP), accelerated phase (AP), or blastic phase (BP) were injected into preirradiated NOD/SCID mice. Animals were killed at serial intervals; cell suspensions and/or tissue sections from different organs were studied by immunohistochemistry and/or flow cytometry using antihuman CD45 monoclonal antibodies (MoAbs), and by fluorescence in situ hybridization (FISH) for the BCR-ABL fusion gene. One hour after injection, cells were sequestered in the lungs and liver, but 2 weeks later they were no longer detectable in either site. Similar short-term kinetics were observed using 51Cr-labeled cells. The first signs of engraftment for BV173, AP, and BP cells were detected in the bone marrow (BM) at 4 weeks. At 8 weeks the median percentages of human cells in murine marrow were 4% (range, 1 to 9) for CP, 11% (range, 5 to 36) for AP, 38.5% (range, 18 to 79) for BP, and 54% (range, 31 to 69) for BV173. CP cells progressively infiltrated BM (21%) and spleen (6%) by 18 to 20 weeks; no animals injected with the cell line or BP cells survived beyond 12 weeks. The rate of increase in human cell numbers was higher for BP (7.3%/week) as compared with CP (0.9%/week) and AP (0. 5%/week). FISH analysis with BCR and ABL probes showed that some of the human cells engrafting after injection of CP cells lacked a BCR-ABL gene and were presumably normal. We conclude that CML cells proliferate in NOD/SCID mice with kinetics that recapitulate the phase of the donor's disease, thus providing an in vivo model of CML biology.  相似文献   

9.
To elucidate the mechanism of human cell elimination from severe combined immunodeficient (SCID) mice transplanted with human peripheral blood lymphocytes (hu-PBL-SCID mice), we explored the immunocytes in the peritoneal cavity in SCID mice where human PBL were transferred. When the phenotype of peritoneal exudate cells (PEC) was compared by flow cytometry among three congenic strains of SCID mice that differ in their acceptability for human PBL, the PEC in NOD-scid mice, which exhibit the highest acceptability, contained the smallest number of F4/80lo/-Mac-1(+)-activated macrophages. Moreover, the proportions of natural killer cells in PEC of the three strains of SCID mice were not always correlated with the acceptability. These findings suggest the possibility that peritoneal macrophages eliminate human cells in hu-PBL-SCID mice. To verify this hypothesis, we evaluated the engraftment of human PBL into SCID mice that were treated with liposome-encapsulated dichloromethylene diphosphonate, which selectively depletes macrophages by inducing apoptosis, or 8-aminoguanidine hemisulphate salt, an inhibitor of inducible nitric oxide synthase of macrophages. As a result, both of these regimens improved engraftment of human PBL, indicating that peritoneal macrophages take part in human cell elimination in the peritoneal cavity of hu-PBL-SCID mice and that it is mediated, at least in part, by direct macrophage cytotoxicity utilizing nitric oxide.  相似文献   

10.
Long-term cultures (LTC) and immunodeficient (NOD/SCID) mice have been used to quantitate and characterize primitive malignant progenitors from patients with acute myelogenous leukemia (AML). In 5-week-old LTC of cells from newly diagnosed patients with AML cytogenetically abnormal as well as normal progenitors could be easily detected and their numbers increased by cytokine supplements to the cultures. Sixty percent of AML samples will engraft in NOD/SCID mouse marrow. The frequency and level of engraftment of human cells detected appears to vary among the different subtypes of AML but is not generally affected by treatment of the mice with human cytokines. Both the LTC and NOD/SCID mouse assay show promise as tools to allow characterization of differences between leukemic stem cells which maintain malignant hematopoiesis in individual patients and, more importantly, between these cells and their normal stem cell counterparts.  相似文献   

11.
Intermediately differentiated mast cell tumors in two dogs were subcutaneously xenotransplanted into severe combined immunodeficiency (SCID) mice. Both tumors primarily grew and were serially transplantable in SCID mice. The histological features of the xenografts were similar to those of original tumors in dogs. Both of these subcutaneous tumors were judged as connective tissue mast cells by toluidine blue stain. One of the two xenografts metastasized to the tracheobronchial lymph nodes, omentum, mesentery, subpleural region and retroperitoneum of the SCID mouse. These canine mast cell tumor xenografts in SCID mice may be valuable tools for investigating the growth and metastatic behaviors of the tumor.  相似文献   

12.
We have studied human leukocyte antigen (HLA)-DR and intercellular adhesion molecule (ICAM)-1 expression on thyroid epithelial cells (TEC) from papillary thyroid carcinoma (PTC) tissues xenografted into two different mouse strains [the severe combined immunodeficient (SCID) mouse, which accepts human tissue with lymphocytes; and the nude mouse, which accepts the tissue but destroys all passenger lymphocytes]. Human PTC [PTC/TIL (PTC with tumor infiltrating lymphocytes) and PTC/PTC (PTC without tumor infiltrating lymphocytes)], Graves' disease (GD), and normal thyroid (N) tissues were xenografted sc into 22 SCID and 21 nude mice. Blood samples were taken every 2 weeks for measurement of human IgG and thyroid antibodies. Seven weeks after xenografting, xenografted thyroid tissues were analyzed for thyrocyte HLA-DR and ICAM-1 expression. SCID mice xenografted with PTC/TIL (PTC/TIL-SCID) manifested IgG production for 6 weeks, but nude mice showed diminished and disappearing IgG production from these xenografts. Thyroperoxidase (TPO)-antibody (Ab)(TPO-Ab) was not detectable in PTC/TIL-SCID despite the presence of TPO-Ab in some donors. Thyroglobulin-Ab (Tg-Ab) was detectable in all mice of PTC/TIL-SCID. Thyrocyte HLA-DR expression from PTC-SCID was markedly increased, compared with that from nude mice xenografts or from N xenografts in SCID mice. In addition, thyrocyte HLA-DR expression from PTC-nude was markedly increased, compared with the expression seen in GD-nude and N-nude xenografts. ICAM-1 expression on TEC from PTC xenografts in the SCID mouse was markedly increased, compared with N xenografts. ICAM-1 expression on TEC from PTC did not show any difference between SCID and nude mice. ICAM-1 expression on TEC from PTC xenografts in the nude mice was markedly increased, compared with those from GD and N xenografts. In conclusion, TIL in PTC produce Tg-Ab but do not produce TPO-Ab. HLA-DR expression on TEC from PTC is strongly constitutive, but it is also affected by TIL. TIL might have some role in control of PTC through partial expression of HLA-DR on TEC. ICAM-1 expression on TEC from PTC seems to be entirely constitutive, and it is not affected by the presence of local lymphocytes, in contrast to autoimmune thyroid disease.  相似文献   

13.
We have established a reproducible in vivo model of human multiple myeloma in the severe combined immunodeficiency (SCID) mouse using both the drug-sensitive 8226/S human myeloma cell line and the P-glycoprotein-expressing multidrug-resistant 8226/C1N subline. As demonstrated previously, the SCID mouse is well suited as a model for myeloma because: (a) human SCID xenografts are readily attained; (b) human myeloma xenografts are readily detected by their immunoglobulin secretion; and (c) differential therapy effects in drug-sensitive versus drug-resistant cell lines are readily demonstrable by monitoring mouse urinary human immunoglobulin output. In the current study, we have utilized this model to evaluate the in vivo efficacy of chemomodulators of P-glycoprotein-related multidrug resistance. In our initial experiments, doxorubicin alone was effective in treating the 8226/S human myeloma xenografts but had no effect on the drug-resistant 8226/C1N xenografts, in the absence of the chemosensitizing agent verapamil. In subsequent experiments, the combination of verapamil and doxorubicin resulted in both a decrease in human lambda light chain urinary excretion and an increase in survival of those animals bearing the 8226/C1N tumor. The median survival time of animals injected with 8226/C1N cells and subsequently treated with doxorubicin was 48.6 +/- 7 days, which compared to a survival of 89.6 +/- 18 days in animals receiving the 8226/S cell line and treated with doxorubicin alone (P < 0.001). When verapamil was added to the treatment regimen of those animals bearing the 8226/C1N xenografts, there was a 179% increase in their life span (P < 0.001), which corresponded with the observed decreased light chain in the urine. In animals receiving multiple courses of chemotherapy, an attenuated response to verapamil and doxorubicin was observed, in a manner analogous to the clinical setting of human drug-resistant myeloma escape from chemosensitivity. The SCID human myeloma xenograft model thus offers a means of evaluating the in vivo efficacy and potential toxicities of new therapeutic approaches directed against P-glycoprotein in multidrug-resistant human myeloma.  相似文献   

14.
We hypothesized that human hematopoietic cells displaying a CD34+, kit-, rhodamine123(low) phenotype would be highly enriched for cells with stem-like properties. To test this hypothesis, we employed fluorescence activated cell sorting (FACS) to isolate cells with this phenotype from normal light density marrow mononuclear cells (MNC). CD34+, kit+, rhodamine123(low) cells comprised from 0.05-0.01% of the total MNC population. They were small, had scant cytoplasm, and contained nuclei with dense, hyperchromatic chromatin and inconspicuous nucleoli. Additional immunophenotyping revealed that these cells were CD33-, CD38-, CD20-, and glycophorin A-. When plated in semisolid cultures containing optimal concentrations of IL-3, GM-CSF, KL, EPO, IL-6, and IL-1 these cells did not form colonies. However, when cultured over irradiated stromal cells, cobblestone areas were observed to form after 3 weeks, and harvested cells were able to initiate long-term cultures. To further demonstrate that these cells were indeed stem like, we also tested their ability to engraft and mature in immunocompromised (SCID) mice. Irradiated (400 cGy) SCID mice were transplanted with 2 x 10(3) candidate stem cells which were then injected with recombinant human growth factors every other day. Two months post-transplant the animals were sacrificed. PCR and FACS analysis of marrow and spleen cell samples revealed the presence of cells expressing human CD45 consistent with engraftment of human stem cells and the establishment of murine-human chimerism. Moreover, MNC isolated from transplanted mice formed unambiguously human BFU-E, CFU-GM and B cell colonies when stimulated with the appropriate growth factors. Accordingly, we have identified a relatively rapid and simple mechanism for isolating primitive human hematopoietic cells with stem cell-like properties. We anticipate that this strategy will be useful for experimental and therapeutic applications that require human stem cells in quantity.  相似文献   

15.
Stable gene transfer to human pluripotent hematopoietic stem cells (PHSCs) is an attractive strategy for the curative treatment of many genetic hematologic disorders. In clinical trials, the levels of gene transfer to this cell population have generally been low, reflecting deficiencies in both the vector systems and transduction conditions. In this study, we have used a pseudotyped murine retroviral vector to transduce human CD34(+) cells purified from bone marrow (BM) and umbilical cord blood (CB) under optimized conditions. After transduction, 71% to 97% of the hematopoietic cells were found to express a low-affinity nerve growth factor receptor (LNGFR) marker gene. Six weeks after transplantation into immunodeficient NOD/LtSz-scid/scid (NOD/SCID) mice, LNGFR expression was detected in 6% to 57% of CD45(+) cells in eight of nine engrafted animals. Moreover, proviral DNA was detected in 8.3% to 45% of secondary colonies derived from BM cells of engrafted NOD/SCID mice. Our data show consistent transduction of SCID-repopulating cells (SRCs) and suggest that the efficiency of gene transfer to human hematopoietic repopulating cells can be improved using existing retroviral vector systems and carefully optimized transduction conditions.  相似文献   

16.
Multiple myeloma remains an incurable malignancy because of marked resistance of tumor cells to conventional chemotherapeutic agents. Alternative strategies are needed to solve these problems. To develop a new strategy, we have generated a monoclonal antibody (MoAb), which detects a human plasma cell-specific antigen, HM1.24. In this report, we evaluated the in vivo antitumor effect of unconjugated anti-HM1.24 MoAb on human myeloma xenografts implanted into severe combined immunodeficiency (SCID) mice. Two models of disseminated or localized tumors were established in SCID mice by either intravenous or subcutaneous injection of human myeloma cell lines, ARH-77 and RPMI 8226. When mice were treated with a single intraperitoneal injection of anti-HM1.24 MoAb 1 day after tumor inoculation, the development of disseminated myeloma was completely inhibited. In mice bearing advanced tumors, multiple injections of anti-HM1.24 MoAb reduced the tumor size and significantly prolonged survival, including tumor cure, in a dose-dependent manner. The proliferation of cultured human myeloma cells was inhibited in vitro by anti-HM1.24 IgG-mediated complement-dependent cytotoxicity, but not by the antibody alone. Moreover, spleen cells from SCID mice mediated antibody-dependent cell cytotoxicity against RPMI 8226 cells. These results indicate that anti-HM1.24 MoAb can be used for immunotherapy of multiple myeloma and related plasma cell dyscrasias.  相似文献   

17.
Until recently, the identification of cellular factors that govern the developmental program of human stem cells has been difficult due to the absence of repopulation assays that detect human stem cells. The transplantation of human bone marrow (BM) or cord blood (CB) into non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) mice has enabled identification of primitive human cells capable of multilineage repopulation of NOD/SCID mice (termed the SCID-repopulating cell [SRC]). Here, we examined the effect of long-term in vivo treatment with various combinations of human cytokines on the developmental program of SRC. Detailed flow cytometric analysis of engrafted mice indicated that the vast majority of the human graft of untreated mice was comprised of B lymphocytes at various stages of development as well as myeloid and primitive cells; T cells were not reproducibly detected. Many studies, including murine in vitro and in vivo data and human in vitro experiments, have suggested that flt3 ligand (FL) and/or Interleukin-7 (IL-7) promotes T- and B-cell development. Unexpectedly, we found that treatment of engrafted mice with the FL/IL-7 combination did not induce human T- or B-cell development, but instead markedly reduced B-cell development with a concomitant shift in the lineage distribution towards the myeloid lineage. Effects on lineage distribution were similar in engrafted mice transplanted with highly purified cells indicating that the action of the cytokines was not via cotransplanted mature cells from CB or BM cells. These data show that the lineage development of the human graft in NOD/SCID mice can be modulated by administration of human cytokines providing a valuable tool to evaluate the in vivo action of human cytokines on human repopulating cells.  相似文献   

18.
This paper introduces a model which incorporates fetal thymus organ culture (FTOC) from NOD mice to replicate thymic development of diabetogenic T cells. NOD fetal pancreas organ culture (FPOC) co-cultured with 13-16 day NOD FTOC for an additional 14-21 days produced less insulin than FPOC cultured alone. Insulin production from the FTOC of non-diabetic strains C57BL/6 and BALB/c was not inhibited by co-culture with FTOC from their syngeneic counterparts. Sections of the NOD co-cultures showed peri-islet infiltration with lymphocytes. Insulin reduction by FTOC/FP co-culture was prevented by co-culture of the NOD FT with FT from immunologically incompetent C.B-17 SCID/SCID mice. Co-culture of NOD FP with NOD FT prior to the development of T cells prevented generation of diabetogenic FTOC. Thus, early exposure of NOD T cell precursors to the thymic stromal elements of C.B-17 SCID/SCID FT or to islet antigens can negatively select for diabetogenic T cells or activate immuno-regulatory cells that can suppress diabetogenic T cell activity. The addition of blocking F(ab')2 fragments of anti-CD3epsilon monoclonal antibody to NOD FTOC/FP co-cultures prevented insulin reduction, implicating a role for TcR-mediated recognition in this "in vitro IDDM" model. The addition of activating whole anti-CD3epsilon caused the complete ablation of insulin production in FTOC/FP co-cultures from all strains tested. Transfer of unprimed syngeneic FTOC cells to prediabetic NOD mice prevented the onset of IDDM while transfer of islet-cell primed FTOC/FP cells slightly increased disease incidence. These data suggest that while diabetogenic T cells are present in the FT, they are normally suppressed, even after organ culture. However, these cells can induce the destruction of islet cells, in vitro and in vivo, if they are appropriately activated with pancreatic tissue.  相似文献   

19.
The ex vivo expansion of hematopoietic progenitors is a promising approach for accelerating the engraftment of recipients, particularly when cord blood (CB) is used as a source of hematopoietic graft. With the aim of defining the in vivo repopulating properties of ex vivo-expanded CB cells, purified CD34(+) cells were subjected to ex vivo expansion, and equivalent proportions of fresh and ex vivo-expanded samples were transplanted into irradiated nonobese diabetic (NOD)/severe combined immunodeficient (SCID) mice. At periodic intervals after transplantation, femoral bone marrow (BM) samples were obtained from NOD/SCID recipients and the kinetics of engraftment evaluated individually. The transplantation of fresh CD34(+) cells generated a dose-dependent engraftment of recipients, which was evident in all of the posttransplantation times analyzed (15 to 120 days). When compared with fresh CB, samples stimulated for 6 days with interleukin-3 (IL-3)/IL-6/stem cell factor (SCF) contained increased numbers of hematopoietic progenitors (20-fold increase in colony-forming unit granulocyte-macrophage [CFU-GM]). However, a significant impairment in the short-term repopulation of recipients was associated with the transplantation of the ex vivo-expanded versus the fresh CB cells (CD45(+) repopulation in NOD/SCIDs BM: 3. 7% +/- 1.2% v 26.2% +/- 5.9%, respectively, at 20 days posttransplantation; P <.005). An impaired short-term engraftment was also observed in mice transplanted with CB cells incubated with IL-11/SCF/FLT-3 ligand (3.5% +/- 1.7% of CD45(+) cells in femoral BM at 20 days posttransplantation). In contrast to these data, a similar repopulation with the fresh and the ex vivo-expanded cells was observed at later stages posttransplantation. At 120 days, the repopulation of CD45(+) and CD45(+)/CD34(+) cells in the femoral BM of recipients ranged between 67.2% to 81.1% and 8.6% to 12.6%, respectively, and no significant differences of engraftment between recipients transplanted with fresh and the ex vivo-expanded samples were found. The analysis of the engrafted CD45(+) cells showed that both the fresh and the in vitro-incubated samples were capable of lymphomyeloid reconstitution. Our results suggest that although the ex vivo expansion of CB cells preserves the long-term repopulating ability of the sample, an unexpected delay of engraftment is associated with the transplantation of these manipulated cells.  相似文献   

20.
PURPOSE: For hypoxic and anoxic cells in solid tumors to be a therapeutic problem, they must live long enough to be therapeutically relevant, or else be rapidly recruited into the proliferating compartment during therapy. We have, therefore, estimated lifetime and recruitment rate of hypoxic human tumor cells in multicell spheroids in vitro, or in xenografted tumors in SCID mice. MATERIALS AND METHODS: Cell turnover was followed by flow cytometry techniques, using antibodies directed at incorporated halogenated pyrimidines. The disappearance of labeled cells was quantified, and verified to be cell loss rather than label dilution. Repopulation was studied in SiHa tumor xenografts during twice-daily 2.5-Gy radiation exposures. RESULTS: The longevity of hypoxic human tumor cells in spheroids or xenografts exceeded that of rodent cell lines, and cell turnover was slower in xenografts than under static growth as spheroids. Human tumor cells remained viable in the hypoxic regions of xenografts for 4-10 days, compared to 3-5 days in spheroids, and 1-3 days for most rodent cells in spheroids. Repopulation was observed within the first few radiation treatments for the SiHa xenografts and, with accumulated doses of more than 10 Gy, virtually all recovered cells had progressed through at least one S-phase. CONCLUSION: Our results suggest an important difference in the ability of human vs. rodent tumor cells to withstand hypoxia, and raise questions concerning the increased longevity seen in vivo relative to the steady-state spheroid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号