首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
分析了可燃气爆炸极限图,阐述了尿素合成塔具备化学爆炸的条件。运用动、静态模型进行计算,对合成气爆炸性进行检验和判断。计算了尿素合成塔化学爆炸能量,探讨了点火源及爆炸过程。对几起尿素合成塔爆炸事故进行探讨,应用波的叠加现象分析了尿素合成塔的爆炸过程。  相似文献   

2.
正4尿塔化学爆炸能量塔器内发生化学爆炸时,其条件比燃烧更为严格,除了需具备发生燃烧的3个充分条件(可燃气、助燃气及火源)外,还被2个必要条件所限制,即爆炸浓度极限和能量极限,且两者必须同时存在,才可能在有火源时被激发进而发生化学爆炸。换言之,只有当塔器内处于爆炸浓度极限范围之内的气体产生足够的能量,此能量源自可燃气与助燃气在火源的激发下发生连锁氧化反应而释放出的化学反应能量,最终导致塔内压力急剧  相似文献   

3.
《化工设计通讯》2017,(3):149-150
对某公司发生的易燃气体爆炸事故进行了分析,认为发生事故的原因是企业职工违规操作和新产品生产技术条件不成熟,安全措施不到位,导致易燃易爆气体聚集达到爆炸极限,遇明火或激发能量后发生化学爆燃事故。  相似文献   

4.
正5点火源及爆炸过程探讨对于一个完整的化学爆炸过程而言,应该由检验、点火、爆炸能量及能量转换等环节连接组合而成。(1)检验前文已对多种条件下的合成混合气进行爆炸浓度极限的考察检验,以判断其爆炸危险性,并据此筛选出合成气成为爆炸性气体的原因。(2)点火进入爆炸浓度极限范围内的混合气体需有火源并点火激发,才能发生氧化反应并放出化学能,最终成为爆炸能量,而没有火源是不可能发生化  相似文献   

5.
可燃气体爆炸极限的理论计算与实验方法   总被引:1,自引:0,他引:1  
爆炸极限是可燃气体爆炸危险性的重要参数之一,在预测爆炸风险、制定防爆措施等方面有重要的参考价值。单组分可燃气体可通过完全燃烧反应所需的氧原子数、化学计量浓度、含碳原子数、北川徽三法计算爆炸极限值;多元混合可燃气体爆炸极限的计算方法有Le Chatelier经验方程及其优化算法;常温下测量可燃气体爆炸极限有国标GB/T12474-2008、美标E681-09、美标E918-83、德国20L球形装置等四种实验方法;高温下测量可燃气体爆炸极限的方法是在常温方法的基础上,增加了在核心反应器外围采取空气浴、水浴或油浴对反应气预先升温这一实验过程,实验步骤可归纳为"抽真空-充气-升温-点火-判定-改变浓度重复试验"。  相似文献   

6.
一、引言根据340起化工厂爆炸事故分析,气相爆炸占69.6%,其中又以气体混合物的爆炸为最多,有161起,接近总数的一半。可见研究这类问题的重要性。气体混合物的爆炸,必须达到一定的极限。浓度当低于或超过该极限,爆炸不会发生。所帮爆炸极限,是指在受一定能源激发下刚足以引起爆炸的极限浓度。爆炸极限浓度,一般系指易燃气体(蒸气)在正常条件下(系统压力760毫米汞柱,温度20℃)在空气中的浓度。通常以容积百分数表示。如氢的爆炸极限为4~74.2;4为爆炸下限,74.2为爆炸上限,其余96%或25.8%为空气。在个别情况下(通常对粉尘),爆炸极限浓度也有用每立方米中的克数来表示。对某些有  相似文献   

7.
爆炸极限是表征可燃气体爆炸特性的重要参数,掌握混合燃气的爆炸极限是防止混合燃气爆炸的关键。阐述了确定混合可燃气体爆炸极限的意义;将混合燃气分成3种情况,并对每种情况下混合燃气爆炸极限的计算方法进行了分析探讨,最后探究了可燃气体含量很低的混合气体易燃性的判定方法。  相似文献   

8.
罗振敏  杨勇  程方明  王涛  常助川  苏彬  张蔓 《化工学报》2020,71(4):1922-1928
为得到惰化条件下丙烯的爆炸极限参数的变化规律,采用标准的可燃性气体爆炸极限测试装置(GB/T 12474—2008),测试研究了N2和CO2对丙烯的爆炸极限、临界氧浓度和最小氧浓度的影响,并绘制了C3H6-N2/CO2-Air爆炸三角形图,对比分析了N2和CO2对丙烯爆炸极限参数的惰化效果。结果表明,添加N2和CO2都会缩小丙烯爆炸极限范围,减小爆炸的危险度。N2惰化条件下,丙烯爆炸上下限重合时N2添加量为49%,临界氧浓度为9.79%;在CO2惰化条件下,丙烯爆炸上下限重合时,CO2的添加量为34%,临界氧浓度为12.94%。在丙烯浓度不变的情况下,发现CO2惰化氛围下的最小氧浓度值均高于N2惰化条件下的。两种惰化工况下的丙烯爆炸三角形结果显示,在CO2惰化的爆炸区域明显小于N2惰化下的;当添加惰性气体使丙烯处于完全惰化状态时,CO2的窒息比和添加量均小于N2。本文的实验数据及结论可为进一步研究丙烯爆炸和工业丙烯安全防爆工作提供理论基础。  相似文献   

9.
罗振敏  解超  王九柱  苏彬 《化工进展》2019,38(6):2574-2580
为探究惰性气体对液化石油气(LPG)惰化抑爆效能的影响规律,本文运用可燃气体爆炸极限测定装置和可视化球型爆炸综合实验系统,分别测试了不同体积分数N2和CO2时,LPG的爆炸极限和压力特性参数并进行对比分析。结果表明:N2和CO2都会缩小液化石油气的爆炸极限,且对爆炸上限的影响程度更大;达到爆炸临界点时,CO2体积分数为34%,小于N2的43%,并且给出了爆炸危险区域的计算公式;在相同条件下,CO2使得液化石油气的最大爆炸压力、最大爆炸压力上升速率降幅大于N2的作用效果,且更好地降低了爆炸危险度和最大爆炸指数,提前了爆炸最猛烈程度的出现时间,减小爆炸危险时间。综合对比后发现,CO2对LPG的抑爆性能要优于N2。  相似文献   

10.
阐述了确定混合燃气爆炸极限的重要意义;分析了混合燃气爆炸极限的计算方法,探究了低含量可燃气体混合物火灾危险性类别的判定方法,指出了相关标准中存在的盲区,提出了制定相关计算混合燃气爆炸极限的企业标准的建议。  相似文献   

11.
We investigated the explosion of a cylindrical charge, which lies on a rigid surface or is positioned at some height above it. The explosion is modeled by the jump between the background and the region occupied by gas at a high pressure, density, and temperature. In an analogous formulation, the explosion from the Tunguska meteorite impact [1–4] was modeled by spherical and cylindrical explosive waves which consider the gravitational back pressure. Explosions from charges with nontraditional shapes have been studied [5–8]. Reflections of an explosive wave from a point charge from a rigid surface have been examined [9–10]. A more complete review of investigations on the spatial effects of forming propagating explosive waves can be found in [11].Moscow. Translated from Fizika Goreniya i Vzryva, Vol. 27, No. 6, pp. 131–134, November–December, 1991  相似文献   

12.
对甲醇-氨-空气多元爆炸性混合气体的爆炸特性与爆炸形态进行了系统的研究,结果表明:甲醇-氨-空气(甲醇∶氨=1∶1.1)爆炸性混合气体的浓度爆炸极限为12.85%~45.25%;该爆炸性混合气体爆炸只有冷焰与爆燃2种形态,不会出现强烈的爆轰现象;氮气与水蒸气对甲醇-氨-空气爆炸性混合气体爆炸具有一定的惰化作用;氨对甲醇-空气爆炸性混合气体爆炸具有明显的阻尼效应,随着甲醇/氨的比值降低,其爆炸危险度、爆炸最高压力以及压力上升速率均会降低。用于指导甲醇氨氧化的工业生产的技术改造,具有抑爆效果好、防爆措施有力、生产能力大幅度增加、经济效益明显等特点。  相似文献   

13.
The vapor explosion process involves an explosive phase change from a thin liquid film into a vapor with a dramatic change in material properties across a high-pressure shock wave. The energy released during the explosion process can reach a level of chemical explosions associated with detonating high explosives. Because no fuel-air chemical reaction is needed for initiating a vapor explosion, the process can be considered as a green reaction that generates zero pollutants. However, the phase change that accompanies a thousand-fold increase in the vapor volume during the rapid film evaporation is a natural consequence of a sudden change in density across the phase front; this feature closely resembles the process of blast wave generation. The high-pressure vapor produced without a chemical reaction expands as a spherical wave at a uniform velocity predicted through the Rankine-Hugoniot shock conditions. In this paper, a new methodology based on a simple shock wave and a phase field theory is proposed to formulate the vapor explosion process.  相似文献   

14.
化工罐区爆炸碎片多米诺效应影响概率计算模型   总被引:3,自引:1,他引:2  
张新梅  陈国华 《化工学报》2008,59(11):2946-2953
爆炸碎片是化工区多米诺事故的重要诱因。从爆炸碎片飞行过程的规律性及碎片产生抛射的不确定性出发,分析化工罐区爆炸碎片破坏性及事故连锁机理。将储罐爆炸瞬间视为一个多方过程,通过求解多方过程状态方程,推导了爆炸碎片初速度计算公式;通过求解碎片飞行的加速度方程并结合边界条件,得到了爆炸碎片飞行距离及飞行速度计算公式;以爆炸碎片飞行规律性分析得到的相关公式为目标函数,分析影响爆炸碎片飞行距离及飞行速度不确定性的随机变量,通过随机抽样并对目标函数不同计算结果的出现频率进行累积,得到爆炸碎片在不同飞行距离上的累积击中概率。通过分析重大危险源单元(major hazard installation unit,MHIU)之间的一次影响及多次影响,构建化工罐区多个重大危险源发生爆炸碎片多米诺影响效应的概率计算模型,揭示爆炸碎片产生、抛射、飞行及打击目标的内在机理,相关分析结果能够为化工园区多米诺事故风险分析奠定基础。  相似文献   

15.
凝聚相炸药爆炸火光现象的初步研究   总被引:1,自引:0,他引:1  
为弄清凝聚相炸药爆炸火光现象的形成机制及影响爆炸发光现象的相关因素,对凝聚相炸药爆炸过程中存在发光现象的各阶段发光机制进行了理论分析,用文献试验结果分析了影响爆炸发光强度的因素。采用高速摄像的试验手段研究了16种凝聚相炸药的爆炸火光现象。结果表明,凝聚相炸药的爆炸发光过程由爆炸和后燃两阶段组成。凝聚相炸药的爆炸发光强度与炸药的爆压、爆温、爆速和氧平衡均有关系。而炸药的氧平衡和质量则影响爆炸火光现象持续的时间。  相似文献   

16.
The existence of two critical states of an explosive material associated with the weakening of a layer of explosive and the excitation of an explosion is examined qualitatively on the basis of the general concepts of mechanical deformation and destruction of a thin layer of viscoplastic explosive material under impact and the resulting dissipative and chemical heat release. The critical conditions, i.e., the impact energy and the pressure created by it in the material, for destruction and initiation of the explosive material are estimated. The results are used to explain experimental data on the dependence of the initiation parameters on the thickness of a layer of explosive material which are of practical interest for analyzing tests of the sensitivity of explosive systems to mechanical interactions. Translated fromFizika Goreniya i Vzyva, Vol. 35, No. 2, pp. 88–95, March–April 1999.  相似文献   

17.
为了减小甲烷爆炸带来的影响,研究了多巴胺自聚合合成聚多巴胺,包覆二氧化硅和碳酸钙混合粉体,在自主研发的亚克力管道实验平台进行甲烷爆炸实验。进行不同浓度聚多巴胺包覆混合粉体的抑爆对比实验,以探究多巴胺浓度对甲烷爆炸的影响。通过粒径分析、电镜扫描、热重分析等技术手段对聚多巴胺包覆混合粉体进行表征分析。实验结果表明聚多巴胺包覆混合粉体符合一般抑爆粉体特征。结合分析最大爆炸超压、火焰传播特征图像来探究其甲烷抑爆性能。分析其爆炸超压时,当多巴胺浓度为0.6 g/L时,相比未喷粉工况,最大爆炸超压下降了32.31%。结合表征分析探究了抑爆机理。  相似文献   

18.
为了减小甲烷爆炸带来的影响,研究了多巴胺自聚合合成聚多巴胺,包覆二氧化硅和碳酸钙混合粉体,在自主研发的亚克力管道实验平台进行甲烷爆炸实验。进行不同浓度聚多巴胺包覆混合粉体的抑爆对比实验,以探究多巴胺浓度对甲烷爆炸的影响。通过粒径分析、电镜扫描、热重分析等技术手段对聚多巴胺包覆混合粉体进行表征分析。实验结果表明聚多巴胺包覆混合粉体符合一般抑爆粉体特征。结合分析最大爆炸超压、火焰传播特征图像来探究其甲烷抑爆性能。分析其爆炸超压时,当多巴胺浓度为0.6 g/L时,相比未喷粉工况,最大爆炸超压下降了32.31%。结合表征分析探究了抑爆机理。  相似文献   

19.
The high energy density compound octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine (HMX) and the strong exothermic compound LiH represent an excellent principal explosive and an active fuel, respectively. Herein, the energetic characteristics of HMX‐based explosives are explored by adding LiH as fuel additive. The detonation parameters of HMX‐based explosives containing LiH were tested with free‐field explosion experiments and compared with those of traditional TNT, HMX, and aluminized explosives. The results show that the explosives exhibit higher energy and present preferable explosion effect when LiH is added as an explosive ingredient. The improvement of impulse is more than 32.8 % at 2 m. The shock wave peak overpressure increases by almost 40 % at a distance of 3 m from detonation center specially for the explosive containing both LiH and Al additives. Elemental H and Li are expected to release tremendous energy to effectively improve the explosives instant damage power, but the detonation duration is shorter than that of Al‐containing mixed explosives, which may limit the advantage over Al in the impulse. Li2CO3 powder is the solid product of HMX/LiH, which explains the LiH oxidation during the explosion. The exothermic processes in the formation are the reason for the increased energy of HMX/LiH explosives. These results can provide guidance to a potential energetic system formed by HMX and LiH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号