首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the study presented in this article, the influence of added alpha-lactalbumin and beta-lactoglobulin on the changes that occur in casein micelles at 250 and 300 MPa were investigated by in-situ measurement of light transmission. Light transmission of a serum protein-free casein micelle suspension initially increased with increasing treatment time, indicating disruption of micelles, but prolonged holding of micelles at high pressure partially reversed HP-induced increases in light transmission, suggesting reformation of micellar particles of colloidal dimensions. The presence of alpha-la and/or beta-lg did not influence the rate and extent of micellar disruption and the rate and extent of reformation of casein particles. These data indicate that reformation of casein particles during prolonged HP treatment occurs as a result of a solvent-mediated association of the micellar fragments. During the final stages of reformation, kappa-casein, with or without denatured whey proteins attached, associates on the surface of the reformed particle to provide steric stabilisation.  相似文献   

2.
《Journal of dairy science》2022,105(5):3871-3882
The interactions among the proteins in sheep skim milk (SSM) during heat treatments (67.5–90°C for 0.5–30 min) were characterized by the kinetics of the denaturation of the whey proteins and of the association of the denatured whey proteins with casein micelles, and changes in the size and structure of casein micelles. The relationship between the size of the casein micelles and the association of whey proteins with the casein micelles is discussed. The level of denaturation and association with the casein micelles for β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) increased with increasing heating temperature and time; the rates of denaturation and association with the casein micelles were markedly higher for β-LG than for α-LA in the temperature range 80 to 90°C; the Arrhenius critical temperature was 80°C for the denaturation of both β-LG and α-LA. The casein micelle size increased by 7 to 120 nm, depending on the heating temperature and the holding time. For instance, the micelle size (about 293 nm) of SSM heated at 90°C for 30 min increased by about 70% compared with that (about 174.6 nm) of unheated SSM. The casein micelle size increased slowly by a maximum of about 65 nm until the level of association of the denatured whey proteins with casein micelles reached 95%, and then increased markedly by a maximum of about 120 nm when the association level was greater than about 95%. The marked increases in casein micelle size in heated SSM were due to aggregation of the casein micelles. Aggregation of the casein micelles and association of whey protein with the micelles occurred simultaneously in SSM during heating.  相似文献   

3.
4.
When skim milk at pH 6.55 was heated (75 to 100 degrees C for up to 60 min), the casein micelle size, as monitored by photon correlation spectroscopy, was found to increase during the initial stages of heating and tended to plateau on prolonged heating. At any particular temperature, the casein micelle size increased with longer holding times, and, at any particular holding time, the casein micelle size increased with increasing temperature. The maximum increase in casein micelle size was about 30-35 nm. The changes in casein micelle size were poorly correlated with the level of whey protein denaturation. However, the changes in casein micelle size were highly correlated with the levels of denatured whey proteins that were associated with the casein micelles. The rate of association of the denatured whey proteins with the casein micelles was considerably slower than the rate of denaturation of the whey proteins. Removal of the whey proteins from the skim milk resulted in only small changes in casein micelle size during heating. Re-addition of beta-lactoglobulin to the whey-protein-depleted milk caused the casein micelle size to increase markedly on heat treatment. The changes in casein micelle size induced by the heat treatment of skim milk may be a consequence of the whey proteins associating with the casein micelles. However, these associated whey proteins would need to occlude a large amount of serum to account for the particle size changes. Separate experiments showed that the viscosity changes of heated milk and the estimated volume fraction changes were consistent with the particle size changes observed. Further studies are needed to determine whether the changes in size are due to the specific association of whey proteins with the micelles or whether a low level of aggregation of the casein micelles accompanies this association behaviour. Preliminary studies indicated lower levels of denatured whey proteins associated with the casein micelles and smaller changes in casein micelle size occurred as the pH of the milk was increased from pH 6.5 to pH 6.7.  相似文献   

5.
Milk, a rich source of nutrients, can be fractionated into a wide range of components for use in foods and beverages. With advancements in filtration technologies, micellar caseins and milk-derived whey proteins are now produced from skim milk using microfiltration. Microfiltered ingredients offer unique functional and nutritional benefits that can be exploited in new product development. Microfiltration offers promise in cheesemaking, where microfiltered milk can be used for protein standardization to improve the yield and consistency of cheese and help with operation throughputs. Micellar casein concentrates and milk whey proteins could offer unique functional and flavor properties in various food applications. Consumer desires for safe, nutritious, and clean-label foods could be potential growth opportunities for these new ingredients. The application of micellar casein concentrates in protein standardization could offer a window of opportunity to US cheese makers by improving yields and throughputs in manufacturing plants.  相似文献   

6.
Milk was processed with high hydrostatic pressure in order to modify the casein micelles. Images, that in details showed the casein micelle structure in untreated and pressure-treated skim milk, were obtained by using cryo-transmission electron microscopy (cryo-TEM). Sizes and shapes adopted by casein micelles in pressurised milk are concluded to be a result of an equilibrium distribution between self-assembling casein molecules in the serum phase and caseins adsorbed to surfaces of casein micelles and are governed by an initial pressure-dependent displacement of caseins into the serum phase. Pressurisation of milk at moderately high pressure, in the range 150–300 MPa, favoured formation of a large number of small micelles that coexisted with a fraction of large micelles, and which appeared perfectly spherical with smooth and well-defined surfaces, features which are suggested to originate from secondary adsorption of caseins. Pressurisation of milk at 400 MPa favoured formation of smaller casein assemblies, with sizes between 30 nm and 100 nm. Measurements of free calcium concentration [Ca2+] showed that calcium was rebound to casein micelles after pressurisation of milk. Furthermore, the electron microscopy images indicated that the substructures were similar for pressure-modified casein micelles and casein micelles in untreated milk.  相似文献   

7.
The effect of high hydrostatic pressure on turbidity of skim milk was measured in situ together with casein micelle size distribution. High pressure (HP) treatment reduced the turbidity of milk with a stronger pressure dependency between 50 and 300 MPa when the temperature was decreased from 20 to 5 °C, while at 30 °C (50–150 MPa) turbidity exceeded that of untreated milk. At 250 and 300 MPa turbidity decreased extremely. During pressurization of milk at 250 and 300 MPa, the turbidity initially decreased, but treatments longer than 10 min increased the turbidity progressively, indicating that re-association followed dissociation of casein micelles. Especially at 40 °C and at 250 and 300 MPa, the turbidity increased beyond untreated milk. Dynamic light scattering was used to investigate casein micelle sizes in milk immediately after long time (up to 4 h) pressurization at 250 and 300 MPa and casein micelle size distributions were bimodal with micelle sizes markedly smaller and markedly larger than those of untreated milk. Pressure modified casein micelles present after treatment of milk at 250 and 300 MPa were concluded to be highly unstable, since the larger micelles induced by pressure showed marked changes toward smaller particle sizes in milk left at ambient pressure.  相似文献   

8.
Caseins are the principal protein components in milk and an important ingredient in the food industry. In liquid milk, caseins are found as micelles of casein proteins and colloidal calcium nanoclusters. Casein micelles were isolated from raw skim milk by size exclusion chromatography and suspended in milk protein-free serum produced by ultrafiltration (molecular weight cut-off of 3 kDa) of raw skim milk. The micelles were imaged by cryo-electron microscopy and subjected to tomographic reconstruction methods to visualize the 3-dimensional and internal organization of native casein micelles. This provided new insights into the internal architecture of the casein micelle that had not been apparent from prior cryo-transmission electron microscopy studies. This analysis demonstrated the presence of water-filled cavities (∼20 to 30 nm in diameter), channels (diameter greater than ∼5 nm), and several hundred high-density nanoclusters (6 to 12 nm in diameter) within the interior of the micelles. No spherical protein submicellar structures were observed.  相似文献   

9.
The aim of this study was to identify the impact of high pressure treatments at sub-zero temperatures (high pressure - low temperature; HPLT) on milk proteins. Whey protein solutions, micellar casein dispersions and two mixtures (micellar caseins:whey proteins, 80:20 and 20:80, w/w) were pressure treated (100–600 MPa) at pH 7.0 or 5.8 at −15 °C, −35 °C and ambient temperature. Solubility data showed that whey proteins could only be affected by HPLT treatments at pH 7.0 if caseins were present, while effects could be induced at pH 5.8 without the presence of caseins. The caseins formed on the one hand large aggregates (flocs) and on the other hand the solubility was increased by the creation of smaller micelles. The formation of flocs could only be observed for HPLT treated samples, which indicates the formation of different protein interactions in milk protein based samples compared with common HP treatments.  相似文献   

10.
11.
概述了热处理过程中对牛乳中酪蛋白内部作用力、酪蛋白各个单体以及胶束结构的影响。指出热处理的温度和处理时间的不同,导致酪蛋白的疏水作用及二硫键的变化、组成酪蛋白胶束的各个单体(αs-酪蛋白、β-酪蛋白、κ-酪蛋白)离解程度及结构的差异、酪蛋白胶束尺寸及胶束间作用力的改变。这对于牛乳酪蛋白的应用和整个胶束结构在热处理过程中的研究具有指导意义。  相似文献   

12.
The aim of the present work was to investigate the role of whey protein denaturation on the acid induced gelation of casein. This was studied by determining the effect of whey protein denaturation both in the presence and absence of casein micelles. The study showed that milk gelation kinetics and gel properties are greatly influenced by the heat treatment sequence. When the whey proteins are denatured separately and subsequently added to casein micelles, acid-induced gelation occurs more rapidly and leads to gels with a more particulated microstructure than gels made from co-heated systems. The gels resulting from heat-treatment of a mixture of pre-denatured whey protein with casein micelles are heterogeneous in nature due to particulates formed from casein micelles which are complexed with denatured whey proteins and also from separate whey protein aggregates. Whey proteins thus offer an opportunity not only to control casein gelation but also to control the level of syneresis, which can occur.  相似文献   

13.
When kappa-casein (kappa-CN) was added to milk, and the milk was subsequently pH adjusted (pH 6.5-6.9) and heated (90 degrees C/15 min), the serum contained considerably higher levels of denatured whey proteins than the milks without added kappa-CN. When milk at pH 6.5-6.9 was heated at 90 degrees C for different times, kappa-CN was found in the serum in the early stages of heating and before significant levels of whey proteins were denatured. kappa-CN reached its maximum level in the serum before the whey proteins were fully denatured. When milk at pH 6.5-6.9 was heated at 20-90 degrees C for 15 min, kappa-CN dissociated from the casein micelles at all temperatures, with the level in the serum increasing with the temperature and the pH at heating. kappa-CN dissociated from the micelles at temperatures below those at which significant levels of the whey proteins were denatured. When taken together, the results from these experiments strongly indicate that the dissociation of kappa-CN from the micelles can precede the interaction of the denatured whey proteins with kappa-CN, and that there is a preferential interaction of the denatured whey proteins with serum-phase kappa-CN.  相似文献   

14.
High hydrostatic pressure disruption of casein micelle isolates was studied by analytical ultracentrifugation and transmission electron microscopy. Casein micelles were isolated from skim milk and subjected to combinations of thermal treatment (85 degrees C, 20 min) and high hydrostatic pressure (up to 676 MPa) with and without whey protein added. High hydrostatic pressure promoted extensive disruption of the casein micelles in the 250 to 310 MPa pressure range. At pressures greater than 310 MPa no further disruption was observed. The addition of whey protein to casein micelle isolates protected the micelles from high hydrostatic pressure induced disruption only when the mix was thermally processed before pressure treatment. The more whey protein was added (up to 5 g/l) the more the protection against high hydrostatic pressure induced micelle disruption was observed in thermally treated samples subjected to 310 MPa.  相似文献   

15.
Solutions (5% protein) of a whey protein concentrate (WPC) in fresh acid whey or in water, as well as the fresh whey alone, were adjusted to pH 5.8, 4.8 or 3.8, heat treated at 90 °C for 10 min and further exposed to high pressure (150 MPa) microfluidization treatment. The volumes of sediment after centrifugation were recorded as a measure of the degree of insolubility of the proteins. Microfluidization disrupted the heat-induced aggregates into non-sedimenting whey protein polymers so that in some cases, especially at pH 3.8, the products studied were almost completely resistant to sedimentation after the microfluidization treatments. Heat denatured/microfluidized whey proteins reaggregated upon subsequent heating, with the pH having a major impact on the amount of sediment produced. Microfluidization of aqueous WPC solutions heat-treated before spray- or freeze-drying substantially increased the solubility of the powders upon reconstitution. Heat-induced viscoelastic gels were produced from freeze-dried microfluidized samples processed at pH 3.8 and reconstituted to solutions containing 12% (w/w) protein.  相似文献   

16.
Pressure processing of foodstuff has been applied to produce or modify proteinaceous gel structures. In real pressure processing the treatment is non-isothermal, due to the adiabatic nature of the process and the heat loss from the product to the vessel. In order to estimate the effect of pressurization on milk constituents pressure and temperature dependent kinetics were determined separately from each other. In a detailed kinetic study whey protein isolate was treated under isobaric (200 to 800 MPa) and isothermal conditions (-2 to 70 degrees C), and the resulting degree of denaturation of beta-lactoglobulin A and B and alpha-lactalbumin was analysed. Kinetic parameters of denaturation were estimated using a one step non-linear regression method which allowed a global fit of the whole data set. The isobaric isothermal denaturation of beta-lactoglobulin and alpha-lactalbumin was found to follow third and second order kinetics, respectively. Isothermal pressure denaturation of both beta-lactoglobulin fractions do not differ significantly and were characterized by an activation volume decreasing with increasing temperature from -10 to about -30 ml mol(-1), which demonstrates that the denaturation rate is accelerated with increasing temperature. The activation energy of about 70 to 100 kJ mol(-1) obtained for beta-lactoglobulin A and B is not dependent to a great extent on the pressure which indicates that above 200 MPa denaturation rate is limited by the aggregation rate while pressure forces unfolding of the molecule.  相似文献   

17.
A known biological role of casein micelles is to transport calcium from mother to young and provide amino acids for growth and development. Previous reports demonstrated that modified casein micelles can be used to transport and deliver hydrophobic probes. In this study, the distribution of lipid-soluble phospholipids, including sphingomyelins (SM) and phosphatidylcholines (PC), was quantified in whole raw milk, skim raw milk, and casein micelles of various sizes during early, mid, and late lactation stages. Low-pressure size exclusion chromatography was used to separate casein micelles by size, followed by hydrophobic extraction and liquid chromatography–mass spectrometry for the quantification of PC and SM. Results showed that the SM d18:1/23:0, d18:1/22:0, d18:1/16:0, d16:1/22:0, d16:1/23:0, and d18:1/24:0 and the PC 16:0/18:1, 18:0/18:2, and 16:0/16:0 were dominating candidates appearing in maximum concentration in whole raw milk obtained from late lactation, with 21 to 50% of total SM and 16 to 35% of total PC appearing in skim milk. Of the total SM and PC found in skim milk, 35 to 46% of SM and 22 to 29% of PC were associated with the casein micelle fraction. The highest concentrations of SM d18:1/22:0 (341 ± 17 µg/g of casein protein) and PC 16:0/18:1 (180 ± 20 µg/g of casein protein) were found to be associated with the largest casein micelles (diameter = 149 nm) isolated in milk from late lactation, followed by a decrease in concentration as the casein micelle size decreased.  相似文献   

18.
The content and physical state of water in foods influence their physical, chemical, quality, safety, and functional behavior. Information concerning the sorption behavior of dairy proteins, in the water activity (Aw) range 0 to 0.9, is collated in this paper. The sorption behavior of proteins in general, the kinetics of absorption, factors affecting water binding, the phenomenon of desorption hysteresis, and the chemical and physical nature of water/protein interactions are reviewed in general terms. This is followed by a discussion of thermodynamic aspects of sorption phenomena and the adequacy of the various equations for describing sorption isotherms of proteins. After a discussion of the methods available for measuring sorption by milk proteins, the sorption behavior of various milk protein preparations, i.e., nonfat dry milk, whey proteins, caseins, and milk powders is summarized. Finally, the water activity of cheese and its relationship to solute mobility and solvent water are discussed. Some of the unique features of protein behavior, i.e., conformational changes, swelling, and solubilization are cited as possible sources of disparities between various reports.  相似文献   

19.
定量分析加热后乳清蛋白与酪蛋白的结合   总被引:3,自引:0,他引:3  
将复原脱脂乳在 70~ 90℃范围内加热 1 0~ 2 5min后 ,用超速离心分离出酪蛋白微粒 ,并用毛细管电泳法定量分析。结果显示 ,β-乳球蛋白更容易结合到酪蛋白微粒上。当加热条件为 70℃、1 0 min时就有相当多的 β-乳球蛋白发生了这种结合 ,这时酪蛋白微粒中没发现任何 α-乳清蛋白 ,只有当加热温度大于 75℃时才有少量 α-乳清蛋白与酪蛋白微粒结合。复原脱脂乳经 90℃、2 5min加热后几乎所有 β-乳球蛋白都已转入酪蛋白微粒部分 ,而只有近 50 %的α-乳清蛋白转入酪蛋白微粒。  相似文献   

20.
《International Dairy Journal》2007,17(10):1161-1167
Studies of the formation of soluble κ-casein/whey protein (WP) complexes in heated (90 °C 10 min−1) milk and related mixtures of proteins have been made. The use of milk samples containing different genetic variants, and having different compositions, allowed the effects of changing the natural protein balance on the formation of particles to be investigated. In addition, studies were made of the effects of addition of WP or of purified κ-casein to the milk samples. The addition of WP caused an increase in the amount and the size of the complexes, but addition of κ-casein to the milk had little or no effect on the complex formation, nor did it seem that the added κ-casein could react with the WP in the milk. Conversely, in systems where the casein micelles were absent, the purified κ-casein reacted well with WP, suggesting that in milk heated at its normal pH the WP react preferentially with the κ-casein on the casein micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号