共查询到20条相似文献,搜索用时 0 毫秒
1.
Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct real-space images of the ripples in a few-layer graphene (FLG) membrane resolved at the atomic scale using monochromated aberration-corrected transmission electron microscopy (TEM). The thickness of FLG amplifies the weak local effects of the ripples, resulting in spatially varying TEM contrast that is unique up to inversion symmetry. We compare the characteristic TEM contrast with simulated images based on accurate first-principles calculations of the scattering potential. Our results characterize the ripples in real space and suggest that such features are likely common in ultrathin materials, even in the nanometer-thickness range. 相似文献
2.
Laetitia Vincent Rym Boukhicha Cyrille Gardès Charles Renard Vy Yam Frédéric Fossard Gilles Patriarche Daniel Bouchier 《Journal of Materials Science》2012,47(4):1609-1613
We report detailed structural analysis of 〈111〉 oriented silicon nanowires (NWs) grown by UHV–CVD using the VLS process with
a gold catalyst. STEM-HAADF observations have revealed an unexpected inhomogeneous distribution of gold nanoclusters on the
NW surface. Gold is mainly distributed on three sides among the six {112}-sidewalls and is anchored on upward {111} facets.
This original observation brought us a new comprehension of the faceting mechanisms. The stability of the 〈111〉 growth direction
needs the formation of facets on {112}-sidewalls with energetically favorable planes. We demonstrate that the initial formation
of covered facets with a three-fold symmetry is driven by the formation of {111} Au/Si interfaces between the nucleated Si
NW and the Au droplet. 相似文献
3.
Incorporation of catalyst atoms during the growth process of semiconductor nanowires reduces the electron mean free path and degrades their electronic properties. Aberration-corrected scanning transmission electron microscopy (STEM) is now capable of directly imaging single Au atoms within the dense matrix of a GaAs crystal, by slightly tilting the GaAs lattice planes with respect to the incident electron beam. Au doping values in the order of 10(17-18) cm(3) were measured, making ballistic transport through the nanowires practically inaccessible. 相似文献
4.
Using confocal micro-Raman and photoluminescence spectroscopy, we studied bending effects on optical properties of individual ZnO nanowires. Raman spectroscopy shows that local tensile strain can be introduced by bending the nanowire. The strain is expected to reduce the band gap on the bent part and modify the local phonon-exciton interaction. The corresponding micro-photoluminescence spectra indicate local suppression of the longitudinal-optical (LO) phonon-exciton interaction, which is determined by the intensity ratio of the second-order LO-phonon replica of the free exciton (FX-2LO) to the first-order process (FX-1LO). Our results may provide insight into the modulation of local electrical and optical properties by deforming the nanostructures. 相似文献
5.
Qiang Fu Zi Yue Zhang Liangzhi Kou Peicai Wu Xiaobing Han Xinli Zhu Jingyun Gao Jun Xu Qing Zhao Wanlin Guo Dapeng Yu 《Nano Research》2011,4(3):308-314
Although possible non-homogeneous strain effects in semiconductors have been investigated for over a half century and the strain-gradient can be over 1% per micrometer in flexible nanostructures, we still lack an understanding of their influence on energy bands. Here we conduct a systematic cathodoluminescence spectroscopy study of the strain-gradient induced exciton energy shift in elastically curved CdS nanowires at low temperature, and find that the red-shift of the exciton energy in the curved nanowires is proportional to the strain-gradient, an index of lattice distortion. Density functional calculations show the same trend of band gap reduction in curved nanostructures and reveal the underlying mechanism. The significant linear strain-gradient effect on the band gap of semiconductors should shed new light on ways to tune optical-electronic properties in nanoelectronics. 相似文献
6.
Raman microprobe studies of long crystalline Si nanowires reveal for the first time the evolution of phonon confinement with wire diameter. The Raman band at approximately 520 cm-1 in bulk Si is found to downshift and asymmetrically broaden to lower frequency with decreasing wire diameter D, in good agreement with a phenomenological model first proposed by Richter et al. An adjustable parameter (alpha) is added to the theory that defines the width of the Gaussian phonon confinement function. We find that this parameter is not sensitive to diameter over the range 4-25 nm. 相似文献
7.
It is generally accepted that silicon nanowires (Si NWs) exhibit linear elastic behavior until fracture without any appreciable plastic deformation. However, the plasticity of Si NWs can be triggered under low strain rate inside the transmission electron microscope (TEM). In this report, two in situ TEM experiments were conducted to investigate the electron-beam (e-beam) effect on the plasticity of Si NWs. An e-beam illuminating with a low current intensity would result in the bond re-forming processes, achieving the plastic deformation with a bent strain over 40% in Si NWs near the room temperature. In addition, an effective method was proposed to shape the Si NWs, where an e-beam-induced elastic-plastic (E-P) transition took place. 相似文献
8.
Han XD Zhang YF Zheng K Zhang XN Zhang Z Hao YJ Guo XY Yuan J Wang ZL 《Nano letters》2007,7(2):452-457
Large strain plasticity is phenomenologically defined as the ability of a material to exhibit an exceptionally large deformation rate during mechanical deformation. It is a property that is well established for metals and alloys but is rarely observed for ceramic materials especially at low temperature ( approximately 300 K). With the reduction in dimensionality, however, unusual mechanical properties are shown by ceramic nanomaterials. In this Letter, we demonstrated unusually large strain plasticity of ceramic SiC nanowires (NWs) at temperatures close to room temperature that was directly observed in situ by a novel high-resolution transmission electron microscopy technique. The continuous plasticity of the SiC NWs is accompanied by a process of increased dislocation density at an early stage, followed by an obvious lattice distortion, and finally reaches an entire structure amorphization at the most strained region of the NW. These unusual phenomena for the SiC NWs are fundamentally important for understanding the nanoscale fracture and strain-induced band structure variation for high-temperature semiconductors. Our result may also provide useful information for further studying of nanoscale elastic-plastic and brittle-ductile transitions of ceramic materials with superplasticity. 相似文献
9.
《Materials Letters》2006,60(17-18):2125-2128
Silicon nanowires (SiNWs) have been catalytically synthesized by heat treatment of Si nanopowder at 980 °C. The SiNWs comprise crystalline Si nanoparticles interconnected with metal catalyst. The formation mechanism of nanowires generally depends on the presence of Fe catalysts in the synthesis process of solid–liquid–solid (SLS). Although gas phase of vapor–liquid–solid (VLS) method can be used to produce various of different nanowire materials, growth model based on the SLS mechanism by heat treatment is more ascendant for providing ultrafast growth of single-crystalline Si nanowires and controlling the diameter of them easily. The growth of single-crystalline SiNWs and morphology were discussed. 相似文献
10.
Test platforms for the ideal strength of materials are provided by almost defect-free nanostructures (nanowires, nanotubes, nanoparticles, for example). In this work, the ultimate bending strengths of Si nanowires with radii in the 20-60 nm range were investigated by using a new bending protocol. Nanowires simply held by adhesion on flat substrates were bent through sequential atomic force microscopy manipulations. The bending states prior to failure were analyzed in great detail to measure the bending dynamics and the ultimate fracture strength of the investigated nanowires. An increase in the fracture strengths from 12 to 18 GPa was observed as the radius of nanowires was decreased from 60 to 20 nm. The large values of the fracture strength of these nanowires, although comparable with the ideal strength of Si, are explained in terms of the surface morphology of the nanowires. 相似文献
11.
Piezoresistance of top-down suspended Si nanowires 总被引:1,自引:0,他引:1
Koumela A Mercier D Dupré C Jourdan G Marcoux C Ollier E Purcell ST Duraffourg L 《Nanotechnology》2011,22(39):395701
Measurements of the gauge factor of suspended, top-down silicon nanowires are presented. The nanowires are fabricated with a CMOS compatible process and with doping concentrations ranging from 2 × 10(20) down to 5 × 10(17) cm(-3). The extracted gauge factors are compared with results on identical non-suspended nanowires and with state-of-the-art results. An increase of the gauge factor after suspension is demonstrated. For the low doped nanowires a value of 235 is measured. Particular attention was paid throughout the experiments to distinguishing real resistance change due to strain modulation from resistance fluctuations due to charge trapping. Furthermore, a numerical model correlating surface charge density with the gauge factor is presented. Comparison of the simulations with experimental measurements shows the validity of this approach. These results contribute to a deeper understanding of the piezoresistive effect in Si nanowires. 相似文献
12.
Silicides, intermetallic compounds formed by the reaction of a metal and Si, have long been used as contacts for metal oxide semiconductor (CMOS) transistors and have more become interesting for other Si nanowire (SiNW) devices. In the following, experimental results for the Ti, V, Pt, Pd, Fe, and Ni–Si systems are reported and placed in the context of prior work on silicide formation from metal films on Si wafers. For the early transition metals Ti and V, the silicide is formed only underneath the contact pad and is Si-rich (MSi2). For the middle transition metal Fe and late transition metals Pt and Pd, a metal-rich silicide was the first phase observed to form, but poor morphologies were common, making it a challenge to incorporate these contacts into nanowire devices. Nickel contacts were the only ones with well-behaved axial silicide growth away from the contact pad, and silicide formation was strongly dependent on the original SiNW orientation. These findings are discussed in terms of kinetic features of the metal-SiNW systems. 相似文献
13.
A new kinetic model is suggested to describe the self-limiting oxidation of Si nanowires by only considering the diffusion step with the influence of stress due to the two-dimension nonuniform deformation of the oxide but not including any rate-limiting step for interfacial reaction. It is assumed the stress results in the change of distribution of diffusion activation energy in the high density region which rises monotonically along with the oxidation, and may be the main physical origin of the self-limiting oxidation behavior of SiNWs. Moreover, the present kinetic model can excellently describe the experimental results for the wide initial diameter over the range of self-limiting oxidation temperature. 相似文献
14.
Semiconducting nanowires grown by the vapor-liquid-solid method commonly develop nonuniform doping profiles both along the growth axis and radially due to unintentional surface doping and diffusion of the dopants from the nanowire surface to core during synthesis. We demonstrate two approaches to mitigate nonuniform doping in phosphorus-doped Si nanowires grown by the vapor-liquid-solid process. First, the growth conditions can be modified to suppress active surface doping. Second, thermal annealing following growth can be used to produce more uniform doping profiles. Kelvin probe force microscopy and scanning photocurrent microscopy were used to measure the radial and the longitudinal active dopant distribution, respectively. Doping concentration variations were reduced by 2 orders of magnitude in both annealed nanowires and those for which surface doping was suppressed. 相似文献
15.
We report the energy band-gap modulation of single-crystalline Si1-xGex (0 相似文献
16.
Nanoheterostructures of NiSi/Si/NiSi in which the length of the Si region can be controlled down to 2 nm have been produced using in situ point contact reaction between Si and Ni nanowires in an ultrahigh vacuum transmission electron microscope. The Si region was found to be highly strained (more than 12%). The strain increases with the decreasing Si layer thickness and can be controlled by varying the heating temperature. It was observed that the Si nanowire is transformed into a bamboo-type grain of single-crystal NiSi from both ends following the path with low-activation energy. We propose the reaction is assisted by interstitial diffusion of Ni atoms within the Si nanowire and is limited by the rate of dissolution of Ni into Si at the point contact interface. The rate of incorporation of Ni atoms to support the growth of NiSi has been measured to be 7 x 10(-4) s per Ni atom. The nanoscale epitaxial growth rate of single-crystal NiSi has been measured using high-resolution lattice-imaging videos. On the basis of the rate, we can control the consumption of Si and, in turn, the dimensions of the nanoheterostructure down to less than 2 nm, thereby far exceeding the limit of conventional patterning process. The controlled huge strain in the controlled atomic scale Si region, potential gate of Si nanowire-based transistors, is expected to significantly impact the performance of electronic devices. 相似文献
17.
Allen JE Hemesath ER Perea DE Lensch-Falk JL Li ZY Yin F Gass MH Wang P Bleloch AL Palmer RE Lauhon LJ 《Nature nanotechnology》2008,3(3):168-173
The potential for the metal nanocatalyst to contaminate vapour-liquid-solid grown semiconductor nanowires has been a long-standing concern, because the most common catalyst material, Au, is highly detrimental to the performance of minority carrier electronic devices. We have detected single Au atoms in Si nanowires grown using Au nanocatalyst particles in a vapour-liquid-solid process. Using high-angle annular dark-field scanning transmission electron microscopy, Au atoms were observed in higher numbers than expected from a simple extrapolation of the bulk solubility to the low growth temperature. Direct measurements of the minority carrier diffusion length versus nanowire diameter, however, demonstrate that surface recombination controls minority carrier transport in as-grown n-type nanowires; the influence of Au is negligible. These results advance the quantitative correlation of atomic-scale structure with the properties of nanomaterials and can provide essential guidance to the development of nanowire-based device technologies. 相似文献
18.
We show, using ab initio calculations based on density functional theory, that for hydrogen-passivated Si nanowires (SiNWs), the relative contribution of surface atoms to the band-edge states varies according to the way these surface atoms are bonded to the core ones. The largest influence occurs when these bonds are oriented along the wire's growth direction, which occurs either on the symmetric (001) 1 x 1 or the monohydrated (111) 1 x 1 surfaces. These results are obtained for wires grown along the [110] direction, with hexagonal cross-sections and facets corresponding to (111) and (001) planes, as observed experimentally. Their diameters range from about 10 to 35 A. On the basis of our results, we propose that particular facets should be more appropriate to be functionalized in order to build SiNW-based sensors. As an example, we have investigated the effect of NH2 adsorbed on some of these surfaces on the electronic structure of these wires. 相似文献
19.
Eun-Ha Kim So-Ye Park Kun-Hong Lee Hyung Seok Kim Chan Gyung Park 《Thin solid films》2009,517(24):6629-5114
Si nanowires were synthesized from Si wafers and from thin Si films deposited on various substrates by microwave irradiation. The power and time were key determinants of the diameter and morphology of the synthesized Si nanowires. The nanowires had an amorphous structure due to the extremely high heating rate. Carbon coating of the Si nanowires was easily achieved by introducing acetylene after synthesizing the nanowires. Carbon-coated Si nanowires are potential candidates for use as the anode material in next generation Li-ion batteries. 相似文献
20.
We exploited the oxide shell structure to explore the structure confinement effect on the nickel silicide growth in one-dimensional nanowire template. The oxide confinement structure is similar to the contact structure (via hole) in the thin film system or nanodevices passivated by oxide or nitride film. Silicon nanowires in direct contact with nickel pads transform into two phases of nickel silicides, Ni31Si12 and NiSi2, after one-step annealing at 550 °C. In a bare Si nanowire during the annealing process, NiSi2 grows initially through the nanowire, followed by the transformation of NiSi2 into the nickel-rich phase, Ni31Si12 starting from near the nickel pad. Ni31Si12 is also observed under the nickel pads. Although the same phase transformations of Si to nickel silicides are observed in nanowires with oxide confinement structure, the growth rate of nickel silicides, Ni31Si12 and NiSi2, is retarded dramatically. With increasing oxide thickness from 5 to 50 nm, the retarding effect of the Ni31Si12 growth and the annihilation of Ni2Si into the oxide confined-Si is clearly observed. Ni31Si12 and Ni2Si phases are limited to grow into the Si/SiOx core-shell nanowire as the shell thickness reaches 50 nm. It is experimental evidence that phase transformation is influenced by the stressed structure at nanoscale. 相似文献