首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Traditional methodologies for development of microbial growth models under dynamic temperature conditions do not take into account the organism's history. Such models have been shown to be inadequate in predicting growth of the organisms under dynamic conditions commonly encountered in the food industry. The objective of the current research was to develop a predictive model for Clostridium perfringens spore germination and outgrowth in cooked chicken products during cooling by incorporating a function to describe the prior history of the microbial cell in the secondary model. Incorporating an assumption that growth kinetics depends in an explicit way on the cells' history could provide accurate estimates of growth or inactivation.Cooked, ground uncured chicken was inoculated with C. perfringens spores, and from this chicken, samples were formed and vacuum packaged. For the isothermal experiments, all samples were incubated in a constant temperature water baths stabilized at selected temperatures between 10 and 51 °C and sampled periodically. The samples were cooled from 54.4 to 27 °C and subsequently from 27 to 4 °C at different time periods (cooling rates) for dynamic cooling experiments. The standard model provided predictions that varied from the observed mean log10 growth values by magnitudes up to about 0.65 log10. However, for a selected memory model, estimates of log10 relative growth provided predictions within 0.3 log10 of the mean observed log10 growth values. These findings point to an improvement of predictions obtained by memory models over those obtained by the standard model. More study though is needed to validate the selected model.Industrial relevanceMention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

2.
《Food microbiology》2002,19(4):313-327
Estimates of the growth kinetics of Clostridium perfringens from spores at temperatures applicable to the cooling of cooked cured chicken products are presented. A model for predicting relative growth of C. perfringens from spores during cooling of cured chicken is derived using a nonlinear mixed effects analysis of the data. This statistical procedure has not been used in the predictive microbiology literature that has been written for microbiologists. However, recently software systems have been including this statistical procedure. The primary growth curves, based on the stages of cell development, identify two parameters: (1) germination, outgrowth, and lag (GOL) time, or lag phase time; and (2) exponential growth rate, egr. The mixed effects model does not consider GOL and egr as constants, but as random variables that would, in all likelihood, differ for different cooling events with the same temperature. As such, it is estimated that the egr, for a given temperature, has a CV of approximately 19%. The model obtained by the mixed effects model is compared to the one obtained by the more traditional two-stage approach. The estimated parameters from the derived models are virtually the same. The model predicts, for example, a geometric mean relative growth of about 9·4 with an upper 95% confidence limit of 21·3 when cooling the product from 51°C to 12°C in 8 h, assuming log linear decline in temperature with time. C. perfringens growth from spores was not observed at a temperature of 12°C for up to 3 weeks.  相似文献   

3.
This paper considers growth models including one based on Baranyi's equations for growth and the other based on the logistic function. Using a common approach for constructing dynamic models for predicting Clostridium perfringens growth in ready-to-eat uncured beef during cooling, there was no appreciable difference between the models' predictions when the population of cells was within the lag or exponential phases of growth. The developed models can be used for designing safe cooling processes; however, the discrepancies between predicted and observed growths obtained in this study, together with discrepancies reported in other papers using the same, or similar methodology as used in this paper, point to a possible inadequacy of the derived models. In particular, the appropriateness of the methodology depends on the appropriateness of using estimated growth kinetics obtained from experiments conducted in isothermal environments for determining coefficients of differential equations that are used for predicting growth in constantly changing (dynamic) environments. The coefficients are interpreted as instantaneous specific rates of change that are independent of prior history. However, there is no known scientific reason that would imply the truth of this assumption. Incorporating a different, less restrictive assumption, allowing for a dependency on the prior history of cells for these kinetic parameters, might lead to models that provide more accurate estimates of growth. For example, a cooling scenario of 54.4-27 degrees C in 1.5h, the average predicted and observed log(10) relative growths were 1.1log(10) and 0.66log(10), respectively, a difference of 0.44log(10,) whereas, when assuming a particular dependency of history, the predicted value was 0.8log(10). More research is needed to characterize the behavior of growth kinetic parameters relative to prior history in dynamic environments.  相似文献   

4.
A predictive dynamic model for Clostridium perfringens spore germination and outgrowth in cooked pork products during cooling is presented. Cooked, ground pork was inoculated with C. perfringens spores and vacuum packaged. For the isothermal experiments, all samples were incubated in a water bath stabilized at selected temperatures between 10 and 51 °C and sampled periodically. For dynamic experiments, the samples were cooled from 54.4 to 27 °C and subsequently from 27 to 4 °C for different time periods, designated as x and y hours, respectively. The growth models used were based on a model developed by Baranyi and Roberts (1994), which incorporates a constant, referred to as the physiological state constant, q0. The value of this constant captures the cells' history before the cooling begins. To estimate specific growth rates, data from isothermal experiments were used, from which a secondary model was developed, based on a particular form of Ratkowsky's 4-parameter equation. Using the data from dynamic experiments and the Ratkowsky model, an optimal value of q0 (=0.01375) was derived minimizing the mean square error of predictions. However, using this estimate, the model had a tendency to over-predict relative growth when there was observed small amounts of relative growth, and under-predict relative growth when there was observed large relative growth. To provide more fail-safe estimates, rather than using the derived value of q0, a value of 0.04 is recommended. The predictive model with this value of q0 would provide more fail-safe estimates of relative growth and could aid producers and regulatory agencies with determining disposition of products that were subjected to cooling deviations.Industrial relevanceSafe time/temperature for cooling of cooked pork is very important to guard against the pathogen in cooked products. Predictive model will assist industry to determine compliance with regulatory performance standards and to ensure microbiological safety of cooked products.  相似文献   

5.
The objective of this work was to develop a new model to predict the growth of Clostridium perfringens in cooked meat during cooling. All data were collected under changing temperature conditions. Individual growth curves were fit using DMFit. Germination outgrowth and lag (GOL) time was modeled versus temperature at the end of GOL using conservative assumptions. Each growth curve was used to estimate a series of exponential growth rates at a series of temperatures. The squareroot model was used to describe the relationship between the square root of the average exponential growth rate and effective temperature. Predictions from the new model were in close agreement with the data used to create the model. When predictions from the model were compared with new observations, fail-dangerous predictions were made a majority of the time. When GOL time was predicted exactly, many fail-dangerous predictions shifted toward the fail-safe direction. Two important facts regarding C. perfringens should impact future modeling research with this organism and may have broader food safety policy implications: (i) the normal variability in the response of the organism from replicate to replicate may be quite large (1 log CFU) and may exceed the current U.S. Food Safety Inspection Service performance standard, and (ii) the accuracy of the GOL time model has a profound influence upon the overall prediction, with small differences in GOL time prediction (approximately 1 h) having a very large effect on the predicted final concentration of C. perfringens.  相似文献   

6.
Comparison of Clostridium perfringens spore germination and outgrowth in cooked uncured products during cooling for different meat species is presented. Cooked, uncured product was inoculated with C. perfringens spores and vacuum packaged. For the isothermal experiments, all samples were incubated in a water bath stabilized at selected temperatures between 10 and 51 °C and sampled periodically. For dynamic experiments, the samples were cooled from 54.4 to 27 °C and subsequently from 27 to 4 °C for different time periods, designated as x and y hours, respectively. The growth models used were based on a model developed by Baranyi and Roberts (1994. A dynamic approach to predicting bacterial growth in food. Int. J. Food Micro. 23, 277-294), which incorporates a constant, referred to as the physiological state constant, q0. The value of this constant captures the cells’ history before the cooling begins. To estimate specific growth rates, data from isothermal experiments were used, from which a secondary model was developed, based on a form of Ratkowsky’s 4-parameter equation. The estimated growth kinetics associated with pork and chicken were similar, but growth appeared to be slightly greater in beef; for beef, the maximum specific growth rates estimated from the Ratkowsky curve was about 2.7 log10 cfu/h, while for the other two species, chicken and pork, the estimate was about 2.2 log10 cfu/h. Physiological state constants were estimated by minimizing the mean square error of predictions of the log10 of the relative increase versus the corresponding observed quantities for the dynamic experiments: for beef the estimate was 0.007, while those for pork and chicken the estimates were about 0.014 and 0.011, respectively. For a hypothetical 1.5 h cooling from 54 °C to 27° and 5 h to 4 °C, corresponding to USDA-FSIS cooling compliance guidelines, the predicted growth (log10 of the relative increase) for each species was: 1.29 for beef; 1.07 for chicken and 0.95 log10 for pork. However, it was noticed that for pork in particular, the model using the derived q0 had a tendency to over-predict relative growth when the observed amount of relative growth was small, and under-predict the relative growth when the observed amount of relative growth was large. To provide more fail-safe estimate, rather than using the derived value of q0, a value of 0.04 is recommended for pork.  相似文献   

7.
Proper temperature control is essential in minimizing Clostridium perfringens germination, growth, and toxin production. The U.S. Department of Agriculture Food Safety and Inspection Service offers two options for the cooling of meat products: follow a standard time-temperature schedule or validate that alternative cooling regimes result in no more than a 1-log CFU/g increase of C. perfringens and no growth of Clostridium botulinum. The Juneja 1999 model for C. perfringens growth during cooling may be helpful in determining whether the C. perfringens performance standard has been achieved, but this model has not been extensively validated. The objective of this study was to validate the Juneja 1999 model under a variety of temperature situations. The Juneja 1999 model for C. perfringens growth during cooling is fail safe when low (<1 log CFU/ml) or high (>3 log CFU/ml) observed increases occur during exponential cooling. The Juneja 1999 model consistently underpredicted growth at intermediate observed increases (1 to 3 log CFU/ml). The Juneja 1999 model also underpredicted growth whenever exponential cooling took place at two different rates in the first and second portions of the cooling process. This error may be due to faster than predicted growth of C. perfringens cells during cooling or to an inaccuracy in the Juneja 1999 model.  相似文献   

8.
Many meat-based food products are cooked to temperatures sufficient to inactivate vegetative cells of Clostridium perfringens, but spores of this bacterium can survive, germinate, and grow in these products if sufficient time, temperature, and other variables exist. Because ingestion of large numbers of vegetative cells can lead to concomitant sporulation, enterotoxin release in the gastrointestinal tract, and diarrhea-like illness, a necessary food safety objective is to ensure that not more than acceptable levels of C. perfringens are in finished products. As cooked meat items cool they will pass through the growth temperature range of C. perfringens (50 to 15 degrees C). Therefore, an important step in determining the likely level of C. perfringens in the final product is the estimation of growth of the pathogen during cooling of the cooked product. Numerous studies exist dealing with just such estimations, yet consensual methodologies, results, and conclusions are lacking. There is a need to consider the bulk of C. perfringens work relating to cooling of cooked meat-based products and attempt to move toward a better understanding of the true growth potential of the organism. This review attempts to summarize observations made by researchers and highlight variations in experimental approach as possible explanations for different outcomes. An attempt is also made here to identify and justify optimal procedures for conducting C. perfringens growth estimation in meat-based cooked food products during cooling.  相似文献   

9.
Mathematical models have been developed and used for predicting growth of foodborne pathogens in various food matrices. However, these early models either used microbiological media or other model systems to develop the predictive models. Some of these models have been shown to be inaccurate for applications in meat and specific food matrices, especially under dynamic conditions, such as constantly changing temperatures that are encountered during food processing. The objective of this investigation was to develop a model for predicting growth of Clostridium perfringens from spore inocula in cured pork ham. Isothermal growth of C. perfringens at various temperatures from 10 to 48.9 degrees C were evaluated using a methodology that employed a numerical technique to solve a set of differential equations. The estimated theoretical minimum and maximum growth temperatures of C. perfringens in cooked cured pork were 13.5 and 50.6 degrees C, respectively. The kinetic and growth parameters obtained from this study can be used in evaluating growth of C. perfringens from spore populations during dynamically changing temperature conditions such as those encountered in meat processing. Further, this model can be successfully used to design microbiologically "safe" cooling regimes for cured pork hams and similar products.  相似文献   

10.
The effect of NaCl concentration and cooling rate on the ability of Clostridium perfringens to grow from spore inocula was studied with the use of a process that simulates the industrial cooking and cooling of smoked boneless ham and beef roasts. NaCl was added to ground cooked hams A and B (which were commercially obtained) to obtain levels of 2.4, 3.1, 3.6, and 4.1% (wt/wt) and 2.8, 3.3, 3.8, and 4.3% (wt/wt), respectively, and to raw ground beef to obtain levels of 0, 1, 2, 3, and 4% (wt/wt). Ham C, a specially formulated, commercially prepared product, was supplemented with NaCl to obtain levels of 2.0, 2.5, 3.0, and 3.5%. The samples were inoculated with a three-strain mixture of C. perfringens spores to obtain concentrations of ca. 3 log10 CFU/g. Portions of meat (5 g each) were spread into thin layers (1 to 2 mm) in plastic bags, vacuum packaged, and stored at -40 degrees C. Thawed samples were heated at 75 degrees C for 20 min and subsequently cooled in a programmed water bath from 54.4 to < or = 8.5 degrees C in 15, 18, or 21 h. For the enumeration of C. perfringens, samples were plated on tryptose-sulfite-cycloserine agar and incubated in an anaerobic chamber at 37 degrees C for 48 h. Population densities for cooked ham and beef increased as cooling time increased, and NaCl exerted a strong inhibitory effect on the germination and outgrowth of C. perfringens. For beef, while 3% NaCl completely arrested growth, pathogen numbers increased by > or = 3, 5, and 5 log10 CFU/g in 15, 18, and 21 h, respectively, when the NaCl level was <2%. C. perfringens did not grow during cooling for 15, 18, or 21 h in ham samples containing > or = 3.1% NaCl. Results obtained in this study suggest that a 15-h cooling time for cooked ham, which is normally formulated to contain >2% NaCl, would yield an acceptable product (with an increase of <1 log10 CFU/g in the C. perfringens count); however, for beef containing <2% NaCl, C. perfringens populations may reach levels high enough to cause illness.  相似文献   

11.
This study evaluated the effect of organic acids and spices, alone or combined, on Clostridium perfringens growth in cooked ground beef during alternative cooling procedures. Ground beef was inoculated with a three-strain cocktail of C. perfringens (ATCC 10388, NCTC 8238, and NCTC 8239) at 2 log spores per g and prepared following an industrial recipe (10% water, 1.5% sodium chloride, and 0.5% sodium triphosphate [wt/wt]). Treatments consisted of the base meat plus combinations of commercial solutions of sodium lactate or sodium citrate (0 or 2%, wt/wt) with chili, garlic and herbs, curry, oregano, or clove in commercial powder form (0 or 1%, wt/wt). Untreated meat was used as a control. Vacuum-packaged samples of each treatment were cooked (75 degrees C for 20 min) and cooled from 54.4 to 7.2 degrees C in 15, 18, or 21 h. Spore counts were estimated after inoculation, cooking, and cooling. All treatments containing sodium citrate reduced the population of C. perfringens about 0.38 to 1.14 log units during each of the three cooling procedures. No sodium citrate and spice treatment combinations showed antagonisms or synergisms. Regardless of the cooling time, the control ground beef or treatments with any of the five spices alone supported C. perfringens growth above the U.S. Department of Agriculture stabilization guidelines of 1 log unit. Except for the 21-h cooling period, addition of sodium lactate prevented C. perfringens growth over 1 log unit. Depending on the cooling time and spice, some combinations of sodium lactate and spice kept C. perfringens growth below 1 log unit.  相似文献   

12.
13.
This study was conducted to determine how well Clostridium perfringens spores germinate and grow in restructured roast beef treated with different commercial organic salts during an alternative chilling procedure. The meat was prepared according to an industrial recipe (10% water, 1.5% sodium chloride, and 0.5% sodium triphosphate). The base meat was treated with sodium citrate at 2 or 4.8% (wt/wt), buffered to a pH of 5.6, 5.0, or 4.4 (six treatments); a 60% (wt/wt) solution of sodium lactate at 2 or 4.8% (wt/wt); sodium acetate at 0.25% (wt/wt); or sodium diacetate at 0.25% (wt/wt). Untreated meat was used as a control. Meat samples were inoculated with a three-strain cocktail of C. perfringens spores (strains ATCC 10388, NCTC 8238, and NCTC 8239). Meat was vacuum packaged in bags and cooked in a stirred water bath to an internal temperature of 75 degrees C for 20 min, and then the bags were cooled from 54.4 to 4.4 degrees C within 18 h. Samples were taken after inoculation, after cooking, and after chilling. Spore and vegetative cell counts were obtained after incubation at 37 degrees C for 8 to 10 h in Fung's Double Tubes containing tryptose sulfite agar without egg yolk enrichment. Cooking was not sufficient to eliminate C. perfringens spores. Over the 18-h cooling period, sodium citrate, sodium lactate, and sodium diacetate reduced the growth of C. perfringens to < 1 log unit, a growth level that meets U.S. Department of Agriculture performance standards. The use of sodium citrate or sodium lactate at a concentration of > or = 2% (wt/wt) inhibited C. perfringens growth over the 18-h cooling period.  相似文献   

14.
The objective of this study was to develop a computer simulation algorithm to dynamically estimate and predict the growth of Clostridium perfringens in cooked ground beef. The computational algorithm was based on the implicit form of the Gompertz model, the growth kinetics of C. perfringens in cooked ground beef, and the fourth-order Runge-Kutta numerical method. This algorithm was validated using a cocktail of three strains of C. perfringens spores grown under isothermal, square-waved, linear cooling, and exponential cooling temperature profiles. In general, the results of computer simulation matched closely with the experimental data with the absolute errors less than 0.5 log(10) CFU/g. This method may be a useful tool for the food industry, regulatory agencies, distributors, and retailers to predict the effect of temperature abuse on the microbial safety of C. perfringens and other foodborne pathogens in processed meat products.  相似文献   

15.
Spores of foodborne pathogens can survive traditional thermal processing schedules used in the manufacturing of processed meat products. Heat-activated spores can germinate and grow to hazardous levels when these products are improperly chilled. Germination and outgrowth of Clostridium perfringens spores in roast beef during chilling was studied following simulated cooling schedules normally used in the processed-meat industry. Inhibitory effects of organic acid salts on germination and outgrowth of C. perfringens spores during chilling and the survival of vegetative cells and spores under abusive refrigerated storage was also evaluated. Beef top rounds were formulated to contain a marinade (finished product concentrations: 1% salt, 0.2% potassium tetrapyrophosphate, and 0.2% starch) and then ground and mixed with antimicrobials (sodium lactate and sodium lactate plus 2.5% sodium diacetate and buffered sodium citrate and buffered sodium citrate plus 1.3% sodium diacetate). The ground product was inoculated with a three-strain cocktail of C. perfringens spores (NCTC 8238, NCTC 8239, and ATCC 10388), mixed, vacuum packaged, heat shocked for 20 min at 75 degrees C, and chilled exponentially from 54.5 to 7.2 degrees C in 9, 12, 15, 18, or 21 h. C. perfringens populations (total and spore) were enumerated after heat shock, during chilling, and during storage for up to 60 days at 10 degrees C using tryptose-sulfite-cycloserine agar. C. perfringens spores were able to germinate and grow in roast beef (control, without any antimicrobials) from an initial population of ca. 3.1 log CFU/g by 2.00, 3.44, 4.04, 4.86, and 5.72 log CFU/g after 9, 12, 15, 18, and 21 h of exponential chilling. A predictive model was developed to describe sigmoidal C. perfringens growth curves during cooling of roast beef from 54.5 to 7.2 degrees C within 9, 12, 15, 18, and 21 h. Addition of antimicrobials prevented germination and outgrowth of C. perfringens regardless of the chill times. C. perfringens spores could be recovered from samples containing organic acid salts that were stored up to 60 days at 10 degrees C. Extension of chilling time to > or =9 h resulted in >1 log CFU/g growth of C. perfringens under anaerobic conditions in roast beef. Organic acid salts inhibited outgrowth of C. perfringens spores during chilling of roast beef when extended chill rates were followed. Although C. perfringens spore germination is inhibited by the antimicrobials, this inhibition may represent a hazard when such products are incorporated into new products, such as soups and chili, that do not contain these antimicrobials, thus allowing spore germination and outgrowth under conditions of temperature abuse.  相似文献   

16.
In January 1999, the Food Safety and Inspection Service (FSIS) finalized performance standards for the cooking and chilling of meat and poultry products in federally inspected establishments. More restrictive chilling (stabilization) requirements were adopted despite the lack of strong evidence of a public health risk posed by industry practices employing the original May 1988 guidelines (U.S. Department of Agriculture FSIS Directive 7110.3). Baseline data led the FSIS to estimate a "worst case" of 10(4) Clostridium perfringens cells per g in raw meat products. The rationale for the FSIS performance standards was based on this estimate and the assumption that the numbers detected in the baseline study were spores that could survive cooking. The assumptions underlying the regulation stimulated work in our laboratory to help address why there have been so few documented outbreaks of C. perfringens illness associated with the consumption of commercially processed cooked meat and poultry products. Our research took into account the numbers of C. perfringens spores in both raw and cooked products. One hundred ninety-seven raw comminuted meat samples were cooked to 73.9 degrees C and analyzed for C. perfringens levels. All but two samples had undetectable levels (<3 spores per g). Two ground pork samples contained 3.3 and 66 spores per g. Research was also conducted to determine the effect of chilling on the outgrowth of C. perfringens spores in cured and uncured turkey. Raw meat blends inoculated with C. perfringens spores, cooked to 73.9 degrees C, and chilled according to current guidelines or under abuse conditions yielded increases of 2.25 and 2.44 log10 CFU/g for uncured turkey chilled for 6 h and an increase of 3.07 log10 CFU/g for cured turkey chilled for 24 h. No growth occurred in cured turkey during a 6-h cooling period. Furthermore, the fate of C. perfringens in cooked cured and uncured turkey held at refrigeration temperatures was investigated. C. perfringens levels decreased by 2.52, 2.54, and 2.75 log10 CFU/g in cured turkey held at 0.6, 4.4, and 10 degrees C, respectively, for 7 days. Finally, 48 production lots of ready-to-eat meat products that had deviated from FSIS guidelines were analyzed for C. perfringens levels. To date, 456 samples have been tested, and all but 25 (ranging from 100 to 710 CFU/g) of the samples contained C. perfringens at levels of <100 CFU/g. These results further support historical food safety data that suggest a very low public health risk associated with C. perfringens in commercially processed ready-to-eat meat and poultry products.  相似文献   

17.
We investigated the inhibition of Clostridium perfringens spore germination and outgrowth by two green tea extracts with low (green tea leaf powder [GTL]; 141 mg of total catechins per g of green tea extract) and high (green tea leaf extract [GTE]; 697 mg of total catechins per g of extract) catechin levels during abusive chilling of retail cooked ground beef, chicken, and pork. Green tea extracts were mixed into the thawed beef, chicken, and pork at concentrations of 0.5, 1.0, and 2.0% (wt/ wt), along with a heat-activated (75 degrees C for 20 min) three-strain spore cocktail to obtain a final concentration of approximately 3 log spores per g. Samples (5 g) of the ground beef, chicken, and pork were then vacuum packaged and cooked to 71 degrees C for 1 h in a temperature-controlled water bath. Thereafter, the products were cooled from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h, resulting in significant increases (P < 0.05) in the germination and outgrowth of C. perfringens populations in the ground beef, chicken, and pork control samples without GTL or GTE. Supplementation with 0.5 to 2% levels of GTL did not inhibit C. perfringens growth from spores. In contrast, the addition of 0.5 to 2% levels of GTE to beef, chicken, and pork resulted in a concentration-and time-dependent inhibition of C. perfringens growth from spores. At a 2% level of GTE, a significant (P < 0.05) inhibition of growth occurred at all chill rates for cooked ground beef, chicken, and pork. These results suggest that widely consumed catechins from green tea can reduce the potential risk of C. perfringens spore germination and outgrowth during abusive cooling from 54.4 to 7.2 degrees C in 12, 15, 18, or 21 h of cooling for ground beef, chicken, and pork.  相似文献   

18.
Cooling deviations and temperature abuse are two main reasons leading to the risk of Clostridium botulinum outgrowth in cooked pork. The aim of this research was to create a model that could be used to estimate C. botulinum growth from spores in cooked pork at temperatures similar to those used to chill cooked pork in processing facilities and food establishments. A cocktail of proteolytic C. botulinum types A and B consisting of five strains per type were used to inoculate pork to a final spore concentration of approximately 2 log CFU/g and cooked to 71 °C to heat shock the spores and kill vegetative microbes. The growth of C. botulinum was established at constant storage temperatures from 10 to 46 °C. C. botulinum growth was also studied under dynamic temperature conditions with cooling set to start at 54.4 °C and end at 4.4 °C or 7.2 °C in monophasic or biphasic cooling profiles, respectively. Growth parameters were estimated using the Baranyi model as a primary model and growth rates were fitted using the modified Ratkowsky secondary model with respect to temperature. The R2 values ranged from 0.7653 to 0.9995 indicating that the Baranyi primary model was well suited to the growth data. The modified Ratkowsky secondary model's R2 was 0.9653 and its root mean square error (RMSE) was 0.0687. All 11 prediction error values computed were within the limit of acceptable prediction zone (−1.0 to 0.5) suggesting a good fit of the model. The predictive model can provide information for the safety of cooked pork exposed to longer chilling times or for customized process schedule development as cooling of larger diameter products presents a processing challenge in the meat process operations.  相似文献   

19.
The effect of heating rate on the heat resistance, germination, and outgrowth of Clostridium perfringens spores during cooking of cured ground pork was investigated. Inoculated cured ground pork portions were heated from 20 to 75°C at a rate of 4, 8, or 12°C/h and then held at 75°C for 48 h. No significant differences (P > 0.05) in the heat resistance of C. perfringens spores were observed in cured ground pork heated at 4, 8, or 12°C/h. At heating rates of 8 and 12°C/h, no significant differences in the germination and outgrowth of spores were observed (P > 0.05). However, when pork was heated at 4°C/h, growth of C. perfringens occurred when the temperature of the product was between 44 and 56°C. In another set of experiments, the behavior of C. perfringens spores under temperature abuse conditions was studied in cured and noncured ground pork heated at 4°C/h and then cooled from 54.4 to 7.2°C within 20 h. Temperature abuse during cooling of noncured ground pork resulted in a 2.8-log CFU/g increase in C. perfringens. In cured ground pork, C. perfringens decreased by 1.1 log CFU/g during cooling from 54.4 to 36.3°C and then increased by 0.9 log CFU/g until the product reached 7.2°C. Even when the initial level of C. perfringens spores in cured ground pork was 5 log CFU/g, the final counts after abusive cooling did not exceed 3.4 log CFU/g. These results suggest that there is no risk associated with C. perfringens in cured pork products under the tested conditions.  相似文献   

20.
Desmond EM  Kenny TA  Ward P  Sun DW 《Meat science》2000,56(3):271-277
Three cooling regimes, vacuum (VC), blast (BC) and slow cooling (SC), were compared for their effect on cooling rate, weight loss and quality of large cooked ham joints. Vacuum cooling reduced the cooling rate (70-4°C) significantly (P<0.05) in comparison to the other methods; mean cooling times for cooked hams (5-6 kg) were 1.9 h for VC, 11.7 for BC and 14.3 for SC. However, VC gave an increased chill loss (P<0.05) of ca. 11% compared to ca. 4% for the other methods due to evaporative moisture loss. Sensory panels found that VC hams were tougher and less juicy (P<0.05). Shear force measurements and texture profile analysis also showed the vacuum cooling to have a toughening effect on the cooked ham. While vacuum cooling had an adverse effect on quality and yield, it was the only one that conformed to recent safety guidelines for cooked meat joints of a reduction in temperature to 5°C inside 10 h. The cooling conditions used do not reproduce full-scale industrial practice, however, the effects found serve as an indicator of the potential benefits and drawbacks of vacuum cooling for cooked meat joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号