首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid-soluble collagen (ASC) from the skin of silver carp (Hypophthalmichthys molitrix) was isolated and some properties of ASC were investigated. SDS–PAGE patterns showed ASC from silver carp skin was type ? collagen. Sulfopropyl-Toyopearl 650(M) column chromatography indicated that ASC from silver carp skin was composed of three kinds of α chains, α1, α2 and α3. Hydroxyproline and proline content of ASC from silver carp skin was 192 residues/1000 residues, which was similar to that of ASC from carp skin. Denaturation temperature (Td) of ASC from silver carp skin was around 29 °C. The results showed that some properties of ASC from silver carp skin were similar to those of ASC from carp skin. However, the peptide map of ASC from silver carp skin digested by pepsin was distinguished with that of ASC from carp skin.  相似文献   

2.
Acid-induced denaturation and aggregation properties of silver carp actomyosin added with d-gluconic acid-δ-lactone (GDL) during incubation at chilled temperature (4 °C) were studied. Actomyosin underwent aggregation with decreasing pH, as evidenced by increased turbidity and decreased protein solubility in 0.6 M NaCl solution. Ca2+-ATPase activity decreased continually with increasing incubation time in the presence of GDL, accompanied by an initial increase in surface reactive sulphydryl (SH) content, indicating the conformation changes of actomyosin during acidification. Protein solubility in selected solvents and electrophoresis analysis showed that the major myofibrillar proteins, particularly, myosin heavy chain and actin were involved in the formation of protein aggregates mainly through noncovalent bonds including hydrophobic interactions and hydrogen bonds during acidification. The slight decrease in total SH content during acidification suggested that disulphide bonds were also involved in acid-induced aggregation of silver carp actomyosin to a lesser extent.  相似文献   

3.
The objective of this work was to compare the physiochemical (molecular weight distribution and amino acid composition) and rheological (viscosity property, gel strength and melting point) properties of gelatins from skins of carp caught in winter to those obtained for the summer equivalents. Gelatins from winter and summer fish skins were extracted at 60, 70 and 80 °C. SDS-PAGE patterns for gelatins extracted under the same conditions showed that the degradation of gelatins from winter fish skins were more severe than that of the summer ones. The imino acid contents of the winter and summer gelatins extracted at 60 °C were very similar, showing 190 and 188 residues/1000 residues, respectively. The gelatins from summer fish presented higher melting points and gel strengths, as well as better viscosity properties than the winter equivalents (P < 0.05). The differences in the rheological properties between winter and summer gelatins may be explained by different thermostability of interstitial collagen molecules (from which gelatins were derived) in the two seasons.  相似文献   

4.
The antioxidant and biochemical properties of enzymatically hydrolyzed silver carp (Hypophthalmichthys molitrix) protein were studied. The molecular weight of the main peaks of the hydrolysates by both Alcalase and Flavourzyme was lower than 5000 Da. The hydrolysates treated by Alcalase for ?1.5 h (hydrolysis time) showed that the relative proportion of <1000 Da fraction was more than 60%. For the biochemical properties, hydrolysis by both enzymes increased protein solubility to above 75% over a wide pH range; and when the hydrolysis time was prolonged (>3 h), the colour of the hydrolysates turned yellowish. The protein hydrolysates exhibited significant hydroxyl radical-scavenging activity and inhibited linoleic acid peroxidation. For Alcalase treatment, the hydroxyl radical-scavenging activity and the inhibition of linoleic acid peroxidation of hydrolysates appeared to reach a maximum level for 1.5, 2.0 h of hydrolysis, respectively; and their antioxidant activity was close to that of α-tocopherol in a linoleic acid emulsion system, and carnosine in the 2-deoxyribose oxidation system. The hydrolysate with lower molecular weight distribution possessed stronger Fe2+ chelation ability at a sample concentration of 5.0 mg/mL. The results suggested that the antioxidant activity of silver carp protein hydrolysates were related to its degree of hydrolysis (DH), hydrolysis time and molecular weight.  相似文献   

5.
Gels from silver carp (Hypophthalmichthys molitrix) surimi were obtained using microwave (MW) heating (15 W/g power intensity for 20–80 s) at different levels of salt (0 g/100 g, 1 g/100 g, or 2 g/100 g). And the gel heated by MW was compared with the gel obtained by conventional water-bath heating (85 °C for 30 min). The gel strength increased when the salt level was increased. The mechanical and functional properties of non-salted, low-salt and regular-salt products were improved by MW heating for 60 s and 80 s, significantly (p < 0.05), except for the cook loss. The content of TCA-soluble peptides indicated that the MW heating inhibited the autolysis of proteins significantly (p < 0.05) during gelling. The SDS-PAGE and total content of –SH group proved that MW enhanced the cross-linking of proteins effectively through disulphide bonds and non-disulphide covalent bonds. The microstructure of the samples revealed that a fine compact network, with particles of protein aggregates, was formed in the low-salt gels (1 g/100 g) heated by MW for 60 s. All of these properties might be responsible for the formation of a superior textural low-salt gel induced by MW.  相似文献   

6.
Silver carp processing by-product protein is usually discarded as an industrial solid waste. In this study the protein was recovered using a pH-shift method, after which seven commercial proteases were separately employed to prepare antioxidative hydrolysates. Among the hydrolysates, pepsin hydrolysates, which had the highest free radical-scavenging activity, were further separated into five peptide fractions, SCPH-I (>10 kDa), SCPH-II (5–10 kDa), SCPH-III (3–5 kDa), SCPH-IV (1–3 kDa), and SCPH-V (<1 kDa), by using ultrafiltration. The antioxidative properties of the peptide fractions were investigated, using a free radical-scavenging assay, by electron spin resonance. The results show that SCPH-V had the highest scavenging effects on DPPH (1,1-diphenyl-2-picrylhydrazyl), hydroxyl and superoxide anion radicals. SCPH-V had potent antioxidant activity in the prevention of the peroxidation of linoleic acid and alleviation of H2O2-induced oxidative stress in human intestinal epithelial caco-2 cells. The results indicated that the antioxidant capacity of silver carp by-product hydrolysates could be enhanced by ultrafiltration.  相似文献   

7.
Cathepsin B from silver carp muscle was purified to 263-fold by acid treatment, ammonium sulfate fractionation, followed by a series of chromatographic separations. The molecular mass of the purified enzyme was 29 kDa as determined by SDS-PAGE and immunoblotting. The purified enzyme was activated by dithiothreitol and cysteine while it was substantially inhibited by E-64, suggesting the purified enzyme belongs to the cysteine proteinase family. Optimal pH and temperature were 5.5 and 35 °C, respectively. The enzyme catalyzed the hydrolysis of Z-Arg-Arg-MCA with a parameter of Km (90 μM) and Kcat (20.3 s−1), but hardly hydrolyzed Arg-MCA. Analysis of surimi gel strength and microstructure showed that cathepsins B and L were capable of destroying the network structure of silver carp surimi gels, consequently causing gel softening. Cathepsin L might play an important role in the modori effect.  相似文献   

8.
Latif Taskaya  Jacek Jaczynski 《LWT》2009,42(6):1082-1286
Isoelectric solubilization/precipitation at acidic and basic pH ranges was applied to whole gutted silver carp (Hypophthalmichthys molitrix) in order to recover muscle proteins. Thermal denaturation (Tonset, Tmax, and ΔH), viscoelasticity (G′), and texture properties (shear stress) of proteins recovered from carp as affected by functional additives (beef plasma protein, potato starch, exogenous transglutaminase, polyphosphate, and titanium dioxide) were determined and compared to Alaska pollock surimi. Proteins recovered from carp showed typical endothermic transitions only when functional additives were used. Similar to endothermic transitions, viscoelasticity in carp proteins increased only when the additives were used. Typical endothermic peaks and viscoelasticity increase were recorded for Alaska pollock surimi. Carp protein-based gels with functional additives had lower (P < 0.05) shear stress than their surimi counterparts, but greater (P < 0.05) or similar (P > 0.05) when compared to surimi gels without functional additives. In addition, generally higher shear stress was measured for carp protein-based gels developed from basic pH treatments than the acidic counterparts. The present study indicates that proteins can be recovered from whole gutted carp using isoelectric solubilization/precipitation. However, if the recovered proteins are used for subsequent development of restructured food products, functional additives should be used.  相似文献   

9.
The effects of setting conditions and soy protein isolate (SPI) on textural properties of surimi produced from silver carp were investigated. Effects of setting temperature, setting time and protein concentration on the gel strength were evaluated and compared utilizing response surface methodology. Models for breaking force and breaking distance of silver carp surimi were established. The total protein content was 13.4% in all experimental samples. Setting temperature and protein concentration were the major factors affecting the gel strength. In the range of the additive SPI protein (10–40%), breaking force and distance of silver carp surimi gels decreased when the protein ratio of SPI was increased in the total protein at 30 and 40 °C for 60 min setting and heating at 85 °C for 30 min, but the breaking force obtained for 90% surimi protein plus 10% SPI protein was higher than surimi alone at 50 °C for 60 min incubation and heating at 85 °C for 30 min.  相似文献   

10.
Gelatin is used as a functional ingredient in many foods, pharmaceuticals, and cosmetics as a stabilizing, thickening, and gelling agent. The rheological properties of gelatins are important in the potential functionality of gelatin. This study is designed to determine the rheological properties of gelatin extracted from the skins of silver carp (Hypophthalmichthys molitrix Valenciennes 1844). The extracted gelatin is compared with commercially available gelatins from different sources. The results indicate that the stress-strain relationship of gelatin gels remained in the linear region over a broad range of strains and stresses and gave similar elastic moduli at varying frequency, stress, and strain levels. One exception was a commercial high molecular weight fish skin gelatin that gave a lower elastic modulus indicating that its gel strength was low compared to the other gelatin samples studied. Gel strength varied between 220 and 1230 g while viscosity varied between 4.53 and 6.91 cP among the samples. Melting and gelling temperatures varied between 14.2 and 32.3 °C and 3.2 and 25.4 °C, respectively. Texture profile analysis was done at 2 deformation levels, 25% and 75%, and the results correlated well with gel strength. The correlations between hardness, cohesiveness, and gumminess and gel strength were 0.98, 0.82, and 0.99, respectively, at 25% deformation but lower at 75% deformation. The results suggest that rheological measurements might be used to quickly estimate gel strength using less material. In addition, the silver carp skin gelatin seemed to be of equal quality to some of the commercial gelatins.  相似文献   

11.
The physicochemical characteristics of gelatin obtained by different pretreatments of sturgeon (Acipenser baeri) skin with alkaline and/or acidic solutions have been studied. Visual appearance, pH, gel strength, viscosity and amino acid profile of the gelatins were evaluated. Pretreatment with alkaline solutions of Ca(OH)2 and/or acetic acid (HAC) provided gelatin with a favourable colour. Pretreatment with alkali removed noncollagenous proteins effectively, whilst acid induced some loss of collagenous proteins. Gel strength and viscosity of gelatin pretreated with HAC or alkali followed by HAC were as high as gelatin extracted in the presence of protease inhibitors. Amino acid composition had no significant effect on the gelatin characteristics. The total acid concentration for the highest gel strength was inversely proportional to ionisation strength, and the preferred pH for extracting gelatin with the optimum gel strength was approximately 5.0. The results showed that any available protons, regardless of the type or concentration of the acid, inhibit protease activity, which significantly affects the gelatin characteristics.  相似文献   

12.
Protein hydrolysates from grass carp skin were obtained by enzymatic hydrolysis using Alcalase®. Hydrolysis was performed using the pH-stat method. The hydrolysis reaction was terminated by heating the mixture to 95 °C for 15 min. At 5.02%, 10.4%, and 14.9% degree of hydrolysis (DH), the hydrolysates were analyzed for functional properties. The protein hydrolysates had desirable essential amino acid profiles. Results demonstrated that the hydrolysates had better oil holding and emulsifying capacity at low DH. The water holding capacity increased with increased levels of hydrolysis. Enzymatic modification was responsible for the changes in protein functionality. These results suggest that grass carp fish skin hydrolysates could find potential use as functional food ingredients as emulsifiers and binder agents.  相似文献   

13.
Gelatin was extracted from alkali-pretreated skin of zebra blenny (Salaria basilisca) using commercial pepsin with a yield of 18 g/100 g of skin sample. The polypeptides pattern, gel strength, viscosity, textural parameters and functional properties of the zebra blenny skin gelatin (ZBSG) were investigated. Amino acid analysis revealed that ZBSG contained almost all essential amino acids, with glycine being the most predominant one. ZBSG was identified as a type I gelatin, containing α1 and α2-chains as the major constituents. Its gel strength and viscosity were 170.2 g and 5.95 cP, respectively. Fourier transformed infrared spectroscopy (FT-IR) spectra showed helical arrangements in its structure. Its solubility and functional properties were concentration-dependent. While foam expansion (FE) and foam stability (FS) increased with the increase of concentration, emulsifying activity index (EAI) and emulsion stability index (ESI) were noted to decrease. ZBSG also showed strong clarification ability particularly for apple juice, without affecting nutritional value.  相似文献   

14.
Functional properties of gelatin from dorsal and ventral skin of cuttlefish with and without bleaching by H2O2 at different concentrations (2% and 5% (w/v)) for 24 and 48 h were studied. Gelatin from skin bleached with 5% H2O2 for 48 h showed the highest yield (49.65% and 72.88% for dorsal and ventral skin, respectively). Bleaching not only improved the colour of gelatin gel by increasing the L-value and decreasing a-value but also enhanced the bloom strength, and the emulsifying and foaming properties of the resulting gelatin. Gelatin from bleached skin contained protein with a molecular weight of 97 kDa and had an increased carbonyl content. Fourier transform infrared spectroscopic study showed higher intermolecular interactions and denaturation of gelatin from bleached skin than that of the control. These results indicated that hydrogen peroxide most likely induced the oxidation of gelatin, resulting in the formation of gelatin cross-links, giving improved functional properties.  相似文献   

15.
《食品工业科技》2013,(06):325-329
以鲢鱼皮胶原蛋白和不同多糖为原料制备胶原蛋白-多糖共混膜,通过测定膜的抗拉强度、断裂伸长率、水蒸气透过率、透光率、水溶性等指标,研究多糖对胶原蛋白膜性能的影响。结果表明,壳聚糖/胶原蛋白共混膜的综合性能最佳,当胶原蛋白和壳聚糖的比例为3∶1时,共混膜的力学性能最佳,此时膜的抗拉强度为35.47MPa、断裂伸长率为25.87%,水蒸气透过率、透光率、水溶性较单一胶原蛋白膜有明显的改善。红外光谱、X射线衍射和扫描电镜对其结构进行表征表明,共混膜中胶原蛋白和壳聚糖具有良好的相容性,两者之间存在相互作用。   相似文献   

16.
Kemel Jellouli 《LWT》2011,44(9):1965-1970
Gelatin was extracted from the skin of grey triggerfish (Balistes capriscus) by the acid extraction process with a yield of 5.67 g/100 g skin sample on the basis of wet weight. The chemical composition and functional properties of gelatin were investigated. The gelatin had high protein (89.94 g/100 g) but low fat (0.28 g/100 g) contents. Differences in the amino acid composition between grey triggerfish skin gelatin (GSG) and halal bovine gelatin (HBG) were observed. GSG contained a lower number of imino acids (hydroxyproline and proline) (176 residues per 1000 residues) than HBG (219 residues per 1000 residues), whereas the content of serine was higher (40 versus 29 residues per 1000 residues, respectively). The gel strength of the GSG (168.3 g) was lower than that of HBG (259 g) (p < 0.05) possibly due to lower hydroxyproline content. Grey triggerfish skin gelatin exhibited a slightly lower emulsifying activity and water-holding capacity but greater emulsifying and foam stability, foam formation ability and fat-binding capacity than the halal bovine gelatin (p < 0.05). SDS-PAGE of GSG showed high band intensity for the major protein components, especially, α- and β-components and a similar molecular weight distribution to that of standard calf skin collagen type I.  相似文献   

17.
The rheological and functional properties of gelatin from the skin of bigeye snapper (Priacanthus hamrur) fish were assessed. The protein content of dried gelatin was 94.6% and moisture content was 4.2%. The amino acid profile of gelatin revealed high proportion of glycine and imino acids. The bloom strength of solidified gelatin was 108 g. The average molecular weight of fish skin gelatin was 282 kDa as determined by gel filtration technique. The emulsion capacity (EC) of gelatin at a concentration of 0.05% (w/v) was 1.91 ml oil/mg protein and with increase in concentration, the EC values decreased. The gelling and melting temperatures of gelatin were 10 and 16.8 °C, respectively as obtained by small deformation measurements. The flow behavior of gelatin solution as a function of concentration and temperature revealed non-Newtonian behavior with pseudoplastic phenomenon. The Casson and Herschel–Bulkley models were suitable to study the flow behavior. The yield stress was maximum at 10 °C with the concentration of 30 mg/ml. Thermal gelation behavior of threadfin bream (Nemipterus japonicus) mince in presence of different concentration of gelatin was assessed. Gelatin at a concentration of 0.5% yielded higher storage modulus (G′) value than control. Frequency sweep of heat set gel with gelatin revealed strong network formation.  相似文献   

18.
The effect of fermentation with Pediococcus pentosaceus at different temperatures ranging from 15 to 37 °C on the quality characteristics of silver carp sausages was investigated. Higher temperature stimulated the rapid growth of lactic acid bacteria, resulting in a rapid decline in pH, and consequently suppressed the growth of Pseudomonas, Micrococcaceae and Enterobacteriaceae. However, increasing fermentation temperature gave a progressive increase in total volatile basic nitrogen and biogenic amines in fermented silver carp sausages. Histamine was the main biogenic amine, exceeding 100 mg/kg after 48 h of fermentation at temperatures above 30 °C. Higher content of non-protein nitrogen and α-amino nitrogen correlated with the electrophoretic studies, which showed that proteolysis of high molecular weight myofibrillar and sarcoplasmic proteins was more prominent at higher fermentation temperatures. Products fermented at 23–30 °C showed greatest consumer preference and most favourable textural properties.  相似文献   

19.
Effects of heat treatment at different temperatures (40–90 °C) of film-forming solution (FFS) containing 3% gelatin from cuttlefish (Sepia pharaonis) ventral skin and 25% glycerol (based on protein) on properties and molecular characteristics of resulting films were investigated. The film prepared from FFS heated at 60 and 70 °C showed the highest tensile strength (TS) with the highest melting transition temperature (Tmax) (p < 0.05). Nevertheless, film from FFS heated at 90 °C had the highest elongation at break (EAB) with the highest glass transition temperature (Tg) (p < 0.05). With increasing heating temperatures, water vapor permeability (WVP) of films decreased (p < 0.05), but no differences in L*-value and transparency value were observed (p > 0.05). Based on FTIR spectra, the lower formation of hydrogen bonding was found in film prepared from FFS with heat treatment. Electrophoretic study revealed that degradation of gelatin was more pronounced in FFS and resulting film when heat treatment was conducted at temperature above 70 °C. Thus, heat treatment of FFS directly affected the properties of resulting films.  相似文献   

20.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin with different degree of hydrolysis (DH: 0.40, 0.80 and 1.20%) added with glycerol as plasticizer at various levels (10, 15 and 20%, based on protein) were investigated. Films prepared from gelatin with all DH had the lower tensile strength (TS) and elongation at break (EAB) but higher water vapor permeability (WVP), compared with the control film (without hydrolysis) (p < 0.05). At the same glycerol content, both TS and EAB decreased, while WVP increased (p < 0.05) with increasing %DH. At the same DH, TS generally decreased as glycerol content increased (p < 0.05), however glycerol content had no effect on EAB when gelatins with 0.80 and 1.20% DH were used (p > 0.05). DH and glycerol content had no marked impact on color and the difference in color (ΔE) of resulting films. Electrophoretic study revealed that degradation of gelatin and their corresponding films was more pronounced with increased %DH, resulting in the lower mechanical properties of films. Based on FTIR spectra, with the increasing %DH as well as glycerol content, higher amplitudes for amide-A and amide-B peaks were observed, compared with film from gelatin without hydrolysis (control film) due to the increased –NH2 group caused by hydrolysis and the lower interaction of –NH2 group in the presence of higher glycerol. Thermo-gravimetric analysis indicated that film prepared from gelatin with 1.20% DH exhibited the higher heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Thus, both chain length of gelatin and glycerol content directly affected the properties of cuttlefish skin gelatin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号