首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (< 0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (< 0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (< 0.05). Films with essential oils had varying ΔE* (total colour difference), where the highest value was observed in that added with bergamot essential oil (< 0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874–2926 cm−1 and 1731–1742 cm−1 than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p < 0.05), while the other films had lower activity. Thus, the incorporation of different essential oils and glycerol levels directly affected the properties of gelatin-based film from fish skin.  相似文献   

2.
Characteristics of film from fish skin gelatin incorporated with four leaf essential oils (lemongrass, basil, citronella and kaffir lime), as influenced by different surfactants (Tween‐20, Tween‐80 and soy lecithin), were investigated. Films incorporated with all essential oils had lower tensile strength with higher elongation at break and thickness, compared with control film (P < 0.05). Films added with Tween‐20 showed higher TS, compared with those containing other surfactants (P < 0.05). Water vapour permeability of films incorporated with all essential oils markedly decreased in comparison with control (P < 0.05). Films generally became darker and more yellowness, when incorporated with essential oils. Film containing basil essential oil had the highest DPPH radical– and ABTS radical–scavenging activities, compared with those added with other essential oils. Higher antioxidative activity was obtained in films containing essential oils when soy lecithin was used as surfactant, probably due to the combined effect of both constituents.  相似文献   

3.
Chicken feathers, a by-product of the poultry industry, were utilized as a film base material after extraction of chicken feather protein (CFP). Composite films of CFP and gelatin were prepared, and their mechanical properties were investigated. The tensile strength and elongation at break of the CFP/gelatin composite film significantly (p < 0.05) increased as the gelatin content in the film increased. As a cross-linking agent, 0.5% cinnamaldehyde further improved the film's mechanical properties. Incorporation of clove oil into the composite film resulted in strong inhibition zones against Escherichia coli O157:H7 and Listeria monocytogenes compared with the film without clove oil. Packaging smoked salmon with the composite film containing 1.5% clove oil resulted in a decrease in the populations of E. coli O157:H7 and L. monocytogenes by 1.41 and 1.34 log CFU/g, respectively, compared with the control during storage at 4 °C for 12 days. Furthermore, the peroxide value and thiobarbituric acid reactive substances value decreased by 28 and 36%, respectively, in the smoked salmon packaged with the composite film containing 1.5% clove oil compared with the control during storage. These results suggest that a CFP/gelatin composite film with 1.5% clove oil can be used as an active packaging material for smoked salmon.  相似文献   

4.
The antimicrobial properties of wood extracts are well known; however their application to edible films is limited. In this study, the minimum bactericidal concentration (MBC) of kiam wood extract was established as 300 mg/L at which bacterial growth was completely inhibited. The antimicrobial properties of hydroxypropyl methylcellulose (HPMC) films containing 1-5 fold of MBC of kiam wood extract were tested against Escherichia coli O175:H7, Staphylococcus aureus and Listeria monocytogenes. The edible films containing kiam wood extract exhibited more effective impact on the growth reduction of L. monocytogenes than S. aureus and E. coli (p < 0.05). The use of kiam wood extract at 1 and 2 fold of MBC incorporated into edible HPMC films did not exhibit any antimicrobial activity. However, the inhibitory effect of edible HPMC films containing kiam wood extract was observed at 3, 4 and 5 fold of MBC. The greatest zone of inhibition was observed at 5 fold of MBC incorporated in edible HPMC films. Tensile strength and elongation at break significantly decreased with the incorporation of kiam wood extract, whereas water vapor permeability and film solubility increased. The color of edible films became darker and more reddish-yellowish as well as having a lower transparency as the level of kiam wood extract was increased. Kiam wood extract incorporated in edible film provided the films with a rougher surface than pure edible film. Our results pointed out that the incorporation of kiam wood extract as a natural antibacterial agent has potential for use in extending the shelf life of food products.  相似文献   

5.
Physical, mechanical, antioxidant and antimicrobial properties of hake protein films incorporated with citronella, coriander, tarragon and thyme oils were investigated. Dried hake proteins were solubilized at pH 11.0 (protein concentration in film forming solution ca. 0.9%) and glycerol (59% w/w of protein) and 0.25 ml of each essential oil per gram of protein was added. Films obtained were homogeneous and transparent with a yellowish colour. The addition of the different essential oils reduced the water vapour permeability but increased the solubility of films in water. The amount of protein released from the films depended on the oil added. Among all essential oils incorporated-films the thyme oil films exhibited the lowest mechanical properties (puncture force and elongation at break). Conversely, films with thyme oil added presented the highest inhibition against Shewanella putrefaciens. Antioxidant activity of hake protein films generally increased with the incorporation of essential oils as indicated by DPPH radical scavenging activity and reducing power.  相似文献   

6.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin without and with partial hydrolysis (1.2% degree of hydrolysis) incorporated with 1% ethanolic extract of cinnamon (CME), clove (CLE) and star anise (SAE) were determined. Films with different herb extracts (without and with oxidation) had higher tensile strength (TS) but lower elongation at break (EAB), compared with the control film (without addition of herb extracts) (p < 0.05). Lower water vapor permeability (WVP) and L-value but higher b- and ΔE-values were observed when the extracts were incorporated (p < 0.05). Electrophoretic study revealed that cross-linking was pronounced in films containing different herb extracts. Oxidized extracts yielded films with higher TS and WVP than those without oxidized herb extracts (p < 0.05). Generally, similar properties were noticeable for films from gelatin with and without partial hydrolysis. Nevertheless, higher mechanical properties were obtained for the latter. FTIR spectra indicated that protein–polyphenol interactions were involved in the film. Thermo-gravimetric analysis revealed that films incorporated with SAE or SAE with oxidation (OSAE) exhibited lower heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Films with SAE and OSAE had smoother surface for gelatin without hydrolysis; however, coarser surface was observed in film from gelatin with partial hydrolysis. Thus, the incorporation of different herb extracts directly affected the properties of film from cuttlefish skin gelatin with and without hydrolysis.  相似文献   

7.
Antioxidant chitosan based edible films were developed incorporated with Zataria multiflora Boiss essential oil (ZEO) (5 and 10 g/L) and grape seed extract (GSE) (10 g/L) alone and in combination. The physico-mechanical, wettability, swelling index, color, total phenol and antioxidant characteristics of the films were investigated. Films without any agents were used as control sample. All films, with the exception of 10 g/L GSE + 10 g/L ZEO film, exhibited lower strength and elongation values, and only the addition of 10 g/L ZEO to GSE film improved the water vapor transmission rate of chitosan films. Only GSE containing films had higher swelling index. The incorporation of GSE and ZEO into chitosan film increased the wettability of the surface, total phenol and antioxidant activity. Neat chitosan and ZEO incorporated films had a light yellowish color, whereas GSE + ZEO films were gray.  相似文献   

8.
The use of edible films to release antimicrobial constituents in food packaging is a form of active packaging. Antimicrobial properties of spice extracts are well known, however their application to edible films is limited. In this study, antimicrobial properties of whey protein isolate (WPI) films containing 1.0–4.0% (wt/vol) ratios of oregano, rosemary and garlic essential oils were tested against Escherichia coli O157:H7 (ATCC 35218), Staphylococcus aureus (ATCC 43300), Salmonella enteritidis (ATCC 13076), Listeria monocytogenes (NCTC 2167) and Lactobacillus plantarum (DSM 20174). Ten millilitres of molten hard agar was inoculated by 200 μl of bacterial cultures (colony count of 1 × 108 CFU/ml) grown overnight in appropriate medium. Circular discs of WPI films containing spice extracts, prepared by casting method, were placed on a bacterial lawn. Zones of inhibition were measured after an incubation period. The film containing oregano essential oil was the most effective against these bacteria at 2% level than those containing garlic and rosemary extracts (P < 0.05). The use of rosemary essential oil incorporated into WPI films did not exhibit any antimicrobial activity whereas inhibitory effect of WPI film containing garlic essential oil was observed only at 3% and 4% level (P < 0.05). The results of this study suggested that the antimicrobial activity of some spice extracts were expressed in a WPI based edible film.  相似文献   

9.
The influences of three root essential oils (ginger, turmeric and plai) at different levels (25%, 50% and 100%, based on protein content) on properties and antioxidative activity of fish skin gelatin-based film were investigated. Films incorporated with all essential oils showed the lower tensile strength (TS) but higher elongation at break (EAB) with increasing amount of essential oils, compared with the control film (without oil incorporated), regardless of types of essential oil (p < 0.05). Water vapor permeability (WVP) of films containing essential oils decreased as the amount of essential oils increased (p < 0.05). Decreases in L*-value and increases in b*-, ΔE*- and transparency value were observed with increasing amount of essential oils incorporated (p < 0.05). FTIR spectra indicated that films added with essential oils, especially from plai root, exhibited higher hydrophobicity than the control film, as evidenced by higher amplitude at wavenunber of 2877–2922 cm−1 and 1732 cm−1. Lower degradation temperature was obtained in films containing essential oils. Microstructural study revealed that bilayer films could be formed when essential oils at level above 50% were incorporated. Film incorporated with plai and turmeric essential oils showed the higher DPPH and ABTS radical scavenging activity, respectively, (p < 0.05), compared with the control film and ginger essential oil added film. Thus, the incorporation of root essential oils directly affected properties of fish skin gelatin-based film, depending on types and levels incorporated.  相似文献   

10.
In this study, skate skin gelatin (SSG) was used as a new biodegradable film source and a SSG film was prepared. In addition, thyme essential oil (TEO) was incorporated in the SSG film as an antimicrobial agent for the preparation of an antimicrobial film. The tensile strength (TS) of the film decreased, whereas elongation at break (E) increased by the addition of TEO. The SSG film containing TEO showed increased antimicrobial activity against Listeria monocytogenes and Escherichia coli O157:H7 as TEO concentration increased. To apply the SSG film to food packaging, chicken tenderloin samples were wrapped with the film containing 1% TEO. The packaging of chicken tenderloin with the TEO‐containing SSG film inhibited the growth of L. monocytogenes and E. coli O157:H7 compared to the control during storage. Therefore, the SSG film with added TEO has potential as active food packaging to extend the shelf life of chicken tenderloin.  相似文献   

11.
The addition of nisin into a gelatin matrix can change properties of the film. The aim of this work was to develop gelatin-based films containing different nisin concentrations in order to study their influence on the film's antimicrobial and physical properties and their rheological properties as a film-forming solution (FFS). The FFS was characterised by rheological assays, and the gelatin-based active films were characterised and assessed by the effects of nisin concentrations on their various properties, including antimicrobial activity. Nisin's concentration affected not only its viscoelastic properties of FFS but also its film solubility in water, film surface roughness and light barrier. The addition of nisin also slightly modified the water contact angle and the mechanical properties of the gelatin films. Finally, the films demonstrated activity against Staphylococcus aureus and Listeria monocytogenes at concentrations above 56 mg of nisin g−1 of gelatin.  相似文献   

12.
The aims of this work were to develop gelatin films using glycerol as plasticizer (0–100% based on protein mass) and to establish relationships between glycerol content and structural, barrier, thermal and mechanical film properties. These correlations were established since WVP exhibited a minimum for films containing 20 g glycerol/100 g gelatin, while flexibility increased from 2.2% to 180.9% and Tg shifted from 137.5 to 21.3 °C, for films without glycerol and plasticized films with 80 g glycerol/100 g gelatin, respectively. Furthermore, a satisfactory fit between Tg experimental data and predicted values by Couchman and Karasz's equation was found, with glycerol ranging from 0 to 60 g/100 g gelatin. Tg values correlated inversely with film moisture content, and both mechanical and thermal properties showed a strong dependence since elastic modulus and Tg followed a similar trend. Films exhibited similar X-ray patterns regardless of the glycerol concentration, showing a displacement in the position of the peak located at around 2θ = 8°, which shifted towards lower 2θ values with glycerol content.The abovementioned correlations between film physical properties and glycerol content, would allow to select the optimum conditions to develop, process and manage gelatin films according to specific requirements.Industrial relevanceThe methodology used in this work is of considerable importance for the film development and could be used in industrial applications. The management of film formulations and the function that each component plays could allow to obtain tailormade films. A series of relationships between film properties based on gelatin was found, as well as between these properties and glycerol content of the films. An inflexion point in the behavior and microstructure of these materials was established due to glycerol concentration. The addition of higher quantities of glycerol than that corresponds to the abovementioned point, would not be recommendable since the properties are not modified and moreover, it is not profitable. These results would allow better management of film formulations and an appropriate selection of plasticizer concentration in accordance with the specific requirements of potential users.  相似文献   

13.
Hydrophobic sodium caseinate based edible films were prepared by incorporating stearic and oleic acids. Films were produced with a protein/lipid ratio of 1.05. Antimicrobial films were produced based on the hydrophobic films by adding the essential oil of Zataraia multiflora Boiss. Water vapour permeability, microstructure, antimicrobial, mechanical and thermal properties of these films were studied. Water vapour permeability decreased from 2.18 × 10−9 to 7.81 × 10−11 gPa−1s−1 m−1 on the addition of lipid compounds to film. Scanning electron microscopy showed a partial phase separation of lipid compounds and protein. This fact was confirmed by obtaining two endothermic peaks for lipid containing films during Differential scanning calorimeter. The incorporation of fatty acids into the film structure increased the total specific thermal capacity. The presence of lipids and essential oil decreased tensile strength but increased the elongation at break. Films containing essential oil exhibited a large inhibitory effect on Staphylococcus aureus, as compared to Salmonella typhimurium and Escherichia coli O157:H7.  相似文献   

14.
Antibacterial alginate-based edible film has been studied by incorporation of garlic oil as a natural antibacterial agent. Initially, 0.1% v/v garlic oil was tested in in vitro experiments against some food pathogenic bacteria. The presence of 0.1% v/v garlic oil in the nutrient broth decreased viable cell counts for Escherichia coli, Salmonella typhimurium, Staphylococcus aureus and Bacillus cereus by 2.28, 1.24, 4.31 and 5.61 log cycles, respectively after 24 h incubation. Meanwhile, an increased cell population occurred on all accompanying controls. Antimicrobial alginate films were prepared by incorporating garlic oil up to 0.4% v/v. They were characterized for antibacterial activity, mechanical and physical properties. The edible film exhibited antibacterial activity against Staphylococcus aureus and B. cereus among bacteria tested by using agar diffusion assay. Tensile strength and elongation at break were significantly (p < 0.05) changed by incorporation of garlic oil at 0.3% and 0.4% v/v, respectively. Water vapor permeability decreased significantly (p < 0.05) with 0.4% v/v garlic oil incorporation, whereas total color difference remained same until 0.4% v/v. These results revealed that garlic oil has a good potential to be incorporated into alginate to make antimicrobial edible film or coating for various food applications.  相似文献   

15.
Applications of whey protein concentrate (WPC)-based films have been limited in the food industry due to their poor mechanical properties. This research aims to evaluate the effect of silver nanoparticles (AgNPs) synthesised by Aspergillus niger on the mechanical and antimicrobial properties of WPC-based films. The biosynthesised AgNPs solution was added into the WPC film formula at the concentration of 0, 0.25 and 1.25 mm . The film samples containing AgNPs inhibited the growth of Staphylococcus aureus, Escherichia coli O157:H7, Salmonella Enteritidis, Listeria monocytogenes, Williopsis saturnus or Aspergillus sydowii with zones of inhibition ranging from 13 to 19.7 mm. Incorporation of AgNPs improved tensile strength and water barrier properties of the films by 84% and 67%, respectively. However, per cent elongation at the break of the film decreased from 37% to 11% by the addition of 1.25 mm AgNPs. This work provides a protocol for preparing improved antimicrobial WPC films with AgNPs.  相似文献   

16.
Active films, based on food grade gelatine added with bacteriocins and/or the flavonoid ester prunin laurate as antimicrobial compounds, were prepared. The films were characterized by water vapor permeability, mechanical property measurements and scanning electron microscopy. Film antibacterial activity was determined by the agar diffusion and direct contact microplate techniques against Listeria monocytogenes 01/155, Staphylococcus aureus ATCC29213 and Bacillus cereus 1. Physical properties of gelatine films were not significantly affected by active compound incorporation. Antibacterial effect on each strain was dependent on the active compound incorporated into the film, but in all cases a synergistic inhibitory action was observed when both antimicrobial compounds were added. Thus, the results of this study suggest that gelatine based active films here presented could provide an alternative strategy for food biopreservation.Industrial relevanceThis work proposes the elaboration of active films based on food grade gelatine and the addition of enterocins A, B and P synthesized by Enterococcus faecium SM21 and the flavonoid ester, prunin laurate, as antimicrobial active compounds. Films were prepared using a simple and low cost methodology and their application can be adapted to different kinds of food systems. The inclusion of the antimicrobial compounds on the film matrix did not alter their functional properties. The obtained films were active against L. monocytogenes, S. aureus and B. cereus, providing an alternative tool for food preservation, especially in the case of foods susceptible to contamination by these pathogens. Although the inhibitory effect of active films was different for each indicator strain, in all cases a synergistic inhibition effect was observed when both active compounds, ES and PL, were added to gelatine films. This synergistic effect between both antimicrobial compounds offers a novel potential hurdle technology for food preservation.  相似文献   

17.
Properties of film from cuttlefish (Sepia pharaonis) ventral skin gelatin with different degree of hydrolysis (DH: 0.40, 0.80 and 1.20%) added with glycerol as plasticizer at various levels (10, 15 and 20%, based on protein) were investigated. Films prepared from gelatin with all DH had the lower tensile strength (TS) and elongation at break (EAB) but higher water vapor permeability (WVP), compared with the control film (without hydrolysis) (p < 0.05). At the same glycerol content, both TS and EAB decreased, while WVP increased (p < 0.05) with increasing %DH. At the same DH, TS generally decreased as glycerol content increased (p < 0.05), however glycerol content had no effect on EAB when gelatins with 0.80 and 1.20% DH were used (p > 0.05). DH and glycerol content had no marked impact on color and the difference in color (ΔE) of resulting films. Electrophoretic study revealed that degradation of gelatin and their corresponding films was more pronounced with increased %DH, resulting in the lower mechanical properties of films. Based on FTIR spectra, with the increasing %DH as well as glycerol content, higher amplitudes for amide-A and amide-B peaks were observed, compared with film from gelatin without hydrolysis (control film) due to the increased –NH2 group caused by hydrolysis and the lower interaction of –NH2 group in the presence of higher glycerol. Thermo-gravimetric analysis indicated that film prepared from gelatin with 1.20% DH exhibited the higher heat susceptibility and weight loss in the temperature range of 50–600 °C, compared with control film. Thus, both chain length of gelatin and glycerol content directly affected the properties of cuttlefish skin gelatin films.  相似文献   

18.
Effects of lactoperoxidase system (LPOS) incorporated directly into chitosan films at different concentrations (0.5, 1 and 1.5%) were studied. Films obtained were tested on the inhibition of phytopathogenic strains such as Xanthomonas campestris pv. Mangifera indica, Colletotrichum gloeosporioides (C. 64, C. 4612 and C. 62) and Lasiodiplodia theobromae ngr 05A. Water vapor permeability and mechanical properties of films with LPOS and/or not iodine were also studied. Antibacterial effect obtained by disc diameter technique indicated that chitosan concentration at 1 and 1.5% (w/w) incorporated with LPOS and/or not iodine inhibited higher X. campestris pv. M. indica than chitosan film alone or at low concentrated of 0.5% incorporated by LPOS. The antimicrobial technique using puncture gave very good information on the antifungal effect and on the variability in susceptibility of strains of fungi. C. gloeosporioides C64 and L. theobromae were inhibited completely by 1 and 1.5% chitosan incorporated by LPOS contained or not iodine, while C. gloeosporioides C4612 was sensitive to the presence of iodine and C62 were resistant strains. The properties of chitosan films were not significantly changed by the incorporation of the enzyme system.  相似文献   

19.
The incorporation of essential oils and nanotechnology into edible films has the potential to improve the microbiological safety of foods. The aim of this study was to evaluate the effectiveness of pullulan films containing essential oils and nanoparticles against 4 foodborne pathogens. Initial experiments using plate overlay assays demonstrated that 2% oregano essential oil was active against Staphylococcus aureus and Salmonella Typhimurium, whereas Listeria monocytogenes and Escherichia coli O157:H7 were not inhibited. Two percent rosemary essential oil was active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 1%. Zinc oxide nanoparticles at 110 nm were active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 100 or 130 nm. Conversely, 100 nm silver (Ag) nanoparticles were more active against S. aureus than L. monocytogenes. Using the results from these experiments, the compounds exhibiting the greatest activity were incorporated into pullulan films and found to inhibit all or some of the 4 pathogens in plate overlay assays. In challenge studies, pullulan films containing the compounds effectively inhibited the pathogens associated with vacuum packaged meat and poultry products stored at 4 °C for up to 3 wk, as compared to control films. Additionally, the structure and cross‐section of the films were evaluated using electron microscopy. The results from this study demonstrate that edible films made from pullulan and incorporated with essential oils or nanoparticles may improve the safety of refrigerated, fresh or further processed meat and poultry products.  相似文献   

20.
This study investigated the effects of adding different concentrations of virgin coconut oil (VCO) on the optical, mechanical, thermodynamic and antimicrobial properties, as well as water vapour permeability and morphology of potato starch-based biodegradable films. Increasing VCO concentrations caused a rise in the light transmittance of the films from 2.13 to 4.79 mm−1 and a decrease in water vapour transmittance from 6.77 to 2.12 (10−5 GPa−1 h−1 m−1). At a VCO concentration of 14 wt% (based on potato starch), the tensile strength reached its highest value (19.98 MPa). Scanning electron microscopy showed that the surface of the film became smoother as VCO concentration increased. The addition of VCO inhibited the growth of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. In conclusion, VCO supplementation improved the mechanical, antibacterial and water barrier properties of starch-based films. These results could expand the scope of the application of starch-based films in food packaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号