首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work developed flame retarded glass fiber reinforced polyamide 6 (FR-GFPA) composites with excellent mechanical properties, thermal stability and flame retardancy using a novel flame retardant, lanthanum hypophosphite (LaHP). The flame-retarded properties of FR-GFPA composites were characterized by limiting oxygen index, Underwriters Laboratories 94 testing and cone calorimeter test. FR-GFPA composite with 20 wt% LaHP reached V-0 rating and a high LOI value (27.5 vol%). The mechanical performance analysis showed that both the storage modulus and tensile strength increased and then decreased with the increase of LaHP loading. For FR-GFPA composite with 15 wt% LaHP loading, the storage modulus was 164% higher than that of glass fiber reinforced polyamide 6 (GFPA). Thermogravimetric analysis (TGA) and char residue characterization showed that the addition of LaHP can promote the formation of compact physical char barrier, reduce the mass loss rate and thus improve the flame retardancy of FR-GFPA composites.  相似文献   

2.
The mechanical properties, flame retardancy, thermal degradation and foaming properties of wood–fiber/PP composites have been investigated. Ammonium polyphosphate (APP) and silica were used as flame retardants. The limiting oxygen index (LOI), thermal gravimetric analysis (TGA) and cone colorimeter (CONE) were employed for the study of fire retardance. At the same time, wood–fiber/PP composite foams were produced with the batch foaming technique using CO2 as blowing agent. The effects of APP and silica content, pressure and temperature on the final cell structure were investigated. According to LOI, TGA and cone calorimeter results obtained from the experiments, APP and silica are effective flame retardants for wood–fiber/PP composites, and silica was shown to have a flame retardant synergistic effect with APP in wood–fiber/PP composite. The mechanical properties of the composites decreased with addition of flame retardants, except for the tensile strength of small amount of silica filled wood–fiber/PP composite. The results also revealed that the cellular morphologies of the foamed wood–fiber/PP composites are a strong function of the content of APP and silica as well as foaming conditions.  相似文献   

3.
Wood plastic composites were prepared based on in situ formed poly(ethylene terephthalate) (PET) sub-micro-fibril reinforced high density polyethylene (HDPE) matrices, using a two-step reactive extrusion technology. The use of ethylene-glycidyl methacrylate (E-GMA) copolymer improved phase compatibility in the sub-micro-fibril blends (SMFBs) with 75% HDPE and 25% PET. Most of in situ formed PET fibrils were less than 500 nm in diameter. The PET fibrils obviously increased mechanical properties of the blend, especially the moduli. The subsequent addition of 40 wt.% wood flour did not influence the size and morphology of PET fibrils, and the fibrils and wood fibers had a synergic reinforcement effect on composite properties. Compared with the HDPE/wood composites, the SMFB/wood system had 65% higher tensile strength, 95% higher tensile modulus, 42% higher flexural strength, and 64% higher flexural modulus, respectively. The technology offers a way to use engineering plastics (i.e., PET) for high performance WPC manufacturing.  相似文献   

4.
The development and thermo-mechanical characterization of a novel green composite lamina, made of PolyLactic Acid (PLA) reinforced with a natural fabric extracted from Manicaria Saccifera palm, are presented. The composite was characterized by thermal-analysis (TGA), tensile, flexural, and izod impact tests, and scanning electronic microscopy (SEM). TGA analysis showed that the degradation process of the composite started earlier than that of neat PLA due to the lower thermal stability of the fabric. The mechanical tests showed that PLA properties were improved. The tensile strength, elastic modulus and impact resistance were improved by 26%, 51% and 56% respectively. Good dispersion and mechanical interlocking of PLA into the fabric were seen by SEM explaining the improvements of the mechanical properties of the composite. In summary, the good tensile properties and the excellent energy absorption capabilities of the MF/PLA composite lamina show great potential of Manicaria fabric as reinforcement in green composites.  相似文献   

5.
In recent years, efforts to prepare flexible highly conductive polymer composites at low temperatures for flexible electronic applications have increased significantly. Here, we describe a novel approach for the preparation of flexible highly conductive polymer composites (resistivity: 2.5 × 10−5 Ω cm) at a low temperature (150 °C), enabling the wide use of low cost, flexible substrates such as paper and polyethylene terephthalate (PET). The approach involves (i) in situ reduction of silver carboxylate on the surface of silver flakes by a flexible epoxy (diglycidyl ether of polypropylene glycol) to form highly surface reactive nano/submicron-sized particles; (ii) the in situ formed nano/submicron-sized particles facilitate the sintering between silver flakes during curing. Morphology and Raman studies indicated that the improved electrical conductivity was the result of sintering and direct metal-metal contacts between silver flakes. This approach developed for the preparation of flexible highly conductive polymer composites offers significant advantages, including simple low temperature processing, low cost, low viscosity, suitability for low-cost jet dispensing technologies, flexibility while maintaining high conductivity, and tunable mechanical properties. The developed flexible highly conductive materials with these advantages are attractive for current and emerging flexible electronic applications.  相似文献   

6.
In this study, a new high-performance liquid crystal ester-based thermoset for composite applications was investigated. All-aromatic liquid crystalline thermosets (LCTs) are a promising class of polymers that offer a unique combination of properties such as solvent resistivity, high modulus, high strength, low coefficient of thermal expansion and high after cure glass-transition temperatures (Tg ? 150 °C). Fully cured LCTs offer superior thermo-mechanical properties over high-performance thermoplastic polymers such as PPS, PEEK and PEI. For this study we used a 9000 g mol−1 ester-based LCT based on cheap and readily available monomers, i.e. 4-hydroxybenzoic acid (H), isophthalic acid (I) and hydroquinone (Q), abbreviated by us as HIQ-9. Composite panels prepared from T300 carbon fiber (5-harness satin weave) showed in-plane shear strength of 154 MPa and an in-plane shear modulus of 3.7 GPa. The tensile strength and modulus were measured to be 696 MPa and 57 GPa, respectively. A post-mortem inspection showed that the interfacial strength was excellent and no delamination was observed in the test specimen. Preliminary results show that LCT-based composites exhibit a better combination of (thermo) mechanical properties over PPS and PEI-based composites.  相似文献   

7.
Chicken feather fiber (CFF)/reinforced poly(lactic acid) (PLA) composites were processed using a twin-screw extruder and an injection molder. The tensile moduli of CFF/PLA composites with different CFF content (2, 5, 8 and 10 wt%) were found to be higher than that of pure PLA, and a maximum value of 4.2 GPa (16%) was attained with 5 wt% of CFF without causing any substantial weight increment. The morphology, evaluated by scanning electron microscopy (SEM), indicated that an uniform dispersion of CFF in the PLA matrix existed. The mechanical and thermal properties of pure PLA and CFF/PLA composites were compared using dynamic mechanical analysis (DMA), thermomechanical analysis (TMA) and thermogravimetric analysis (TGA). DMA results revealed that the storage modulus of the composites increased with respect to the pure polymer, whereas the mechanical loss factor (tan δ) decreased. The results of TGA experiments indicated that the addition of CFF enhanced the thermal stability of the composites as compared to pure PLA. The outcome obtained from this study is believed to assist the development of environmentally-friendly composites from biodegradable polymers, especially for converting agricultural waste – chicken feather into useful products.  相似文献   

8.
赵丽萍  蔡青  郭正虹 《复合材料学报》2019,36(10):2259-2265
通过熔融共混方法制备苯基膦酸铈(CeHPP)与十溴二苯醚(DBDPO)复配阻燃玻璃纤维增强聚对苯二甲酸乙二醇酯(GF/PET)复合材料。采用热失重分析(TGA)测试研究了DBDPO-CeHPP对GF/PET复合材料热稳定性的影响。同时利用垂直燃烧(UL-94)、极限氧指数(LOI)及微型锥形量热(MCC)测试表征DBDPO-CeHPP-GF/PET复合材料的阻燃性能。使用SEM对DBDPO-CeHPP-GF/PET复合材料的残炭表面形貌进行观察分析。结果表明,DBDPO与CeHPP复配后对DBDPO-CeHPP-GF/PET体系的热性能和阻燃性能都有很大的影响。其中,GF/PET复合材料与DBDPO和CeHPP质量比为91:6:3时,DBDPO-CeHPP-GF/PET复合材料的LOI高达29.5%,可以通过UL-94 V-0级。在MCC测试中,与纯GF/PET复合材料相比,该配比的DBDPO-CeHPP-GF/PET复合材料总热释放(THR)、热释放速率峰值(PHRR)及热熔(HRC)分别下降了10.2%、13.1%和12.8%。结合残炭形貌的测试结果,对DBDPO-CeHPP-GF/PET复合材料的阻燃机制进行了适当的解释分析。   相似文献   

9.
TiB and La2O3 reinforced titanium matrix composites were in situ prepared by casting and hot working. An effort was made to investigate relationship between β heat treatment temperature, microstructure and mechanical properties. Tensile tests were performed at room temperature, 600, 650 and 700 °C, respectively. Results indicated that composites treated at 10 °C above β transus points obtained fine grain microstructures and superior mechanical properties. When composites were treated at 20 °C above β transus points, the larger α colonies sizes led extremely decreased strength and the effect of reinforcements’ volume fraction on matrix of composites was reduced; dominant failure modes at high temperatures also differed from the fine microstructure.  相似文献   

10.
The binary nano-CaCO3/polypropylene (PP), poly(ethylene terephthalate) (PET) fibers/PP and ternary nano-CaCO3/PET fibers/polypropylene composites were prepared by melt blending method, and their structure and mechanical properties were investigated. The results show that the ternary nano-CaCO3/PET fibers/PP composite displays significantly enhanced mechanical properties compared with the binary PET fibers/PP and nano-CaCO3/PP composites, and neat PP. The X-ray diffraction, dynamic mechanical analysis, scanning electron microscopy and analysis of the non-isothermal crystallization kinetics were used to investigate the reinforcement mechanism of composites. The results indicate that the interfacial action and compatibility between PET fiber and PP are obviously enhanced by the addition of modified nano-CaCO3 particles in the ternary composites and the mechanical property enhancement in the ternary system may be mainly originated from the formation of β-form crystallites of PP induced by the synergistic effect between PET fibers and nano-CaCO3.  相似文献   

11.
The kenaf/polypropylene nonwoven composites (KPNCs), with 50/50 blend ratio by weight, were produced by carding and needle-punching techniques, followed by a compression molding with 6-mm thick gauge. The uniaxial tensile, three-point bending, in-plane shearing, and Izod impact tests were performed to evaluate the composite mechanical properties. The thermal properties were evaluated using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The performance of sound absorption and sound insulation was also investigated. An adhesive-free sandwich structure was found to have excellent sound absorption and insulation performance. Based on the evaluation of end-use performance, the best processing condition combination of 230 °C and 120 s was determined, and the correlation between mechanical properties and acoustical behavior was also verified by the panel resonance theory.  相似文献   

12.
Polypyrrole/poly(vinyl alcohol-co-ethylene) (PPy/PVA-co-PE) nanofiber composites on polyethylene terephthalate (PET) substrates were prepared using spray coating technique and in situ polymerization process. The electric heating behaviors of composites were investigated as functions of the amounts of nanofiber and PPy. It was observed that, the electrical resistivity of composites decreased significantly with increasing nanofiber and PPy contents. Scanning electron microscope images and infrared spectrum studies confirmed the formation of well dispersed network-like structure of PPy/PVA-co-PE nanofibers on PET substrate. Furthermore, maximum temperature attained at a given applied voltage for the composites could be well controlled by changing nanofibers and PPy amounts. PPy/PVA-co-PE nanofiber/PET composites exhibited excellent electric heating performance in aspects of rapid temperature response, long retaining behavior, thermal and operational stability. The incorporation of PPy on PVA-co-PE nanofibers/PET nonwoven substrates resulted in high conductivity and enhanced heating behavior, which have potential to be used as efficient electric heating elements.  相似文献   

13.
The mechanical properties of magnesium matrix composites reinforced by pyrolytic carbon coated short carbon fiber at temperatures close to and above the solidus temperature were investigated by tensile tests for the first time. Microstructural observations and fractographic analysis were carried out in order to reveal the damage mechanisms of the composites with different fraction of liquid. Tensile strength of the composites decreased monotonously with temperature, an exponential equation relating the tensile strength to temperature and liquid fraction was derived. The elongation increases monotonously with temperatures from 400 °C to 428 °C (solidus temperature), and then decreases gradually with increasing fraction of liquid except a trough at 432 °C. The composites almost have no ductility and cannot sustain tensile stress when the fraction of liquid reaches 8%. The amount and distribution of liquid phase in the composites directly determines their mechanical properties and damage behavior.  相似文献   

14.
Magnetically-sensitive polyurethane composites, which were crosslinked with multi-walled carbon nanotubes (MWCNTs) and were filled with Fe3O4 nanoparticles, were synthesized via in situ polymerization method. MWCNTs pretreated with nitric acid were used as crosslinking agents. Because of the crosslinking of MWCNTs with polyurethane prepolymer, the properties of the composites with a high content of Fe3O4 nanoparticles, especially the mechanical properties, were significantly improved. The composites showed excellent shape memory properties in both 45 °C hot water and an alternating magnetic field (f = 45 kHz, H = 29.7 kA m−1). The shape recovery time was less than one minute and the shape recovery rate was over 95% in the alternating magnetic field.  相似文献   

15.
This paper studies the electrical and mechanical responses of cracked carbon nanotube (CNT)-based polymer composites. Tensile tests were performed on single-edge cracked plate specimens of the nanocomposites at room temperature and liquid nitrogen temperature (77 K), and the electrical resistance change of the specimens was monitored. An analytical model based on the electrical conduction mechanism of CNT-based composites was also developed to predict the resistance change resulted from crack propagation. The crack induced resistance change was calculated, and a comparison of the analytical predictions against the experimental data was made to validate the applicability of the model. In addition, the fracture properties of the nanocomposites were assessed in terms of the J-integrals using an elastic-plastic finite element analysis.  相似文献   

16.
通过离子交换法将七钼酸根离子插入到含硝酸根的MgAl层状双氢氧化物(NO_3-MgAl LDHs)的层间,得到含钼酸根的MgAl层状双氢氧化物(Mo-MgAl LDHs),并将制得的LDHs加入到环氧树脂(ER)中制成复合材料ER/LDHs。通过热重分析、锥形量热、极限氧指数和烟密度等测试对复合材料的性能进行分析,结果表明,与纯ER相比,ER/LDHs复合材料的最大热释放速率(PHRR)、总的热释放量(THR)和烟密度都降低,氧指数提高,而且ER/Mo-MgAl LDHs复合材料的阻燃抑烟性能要比ER/NO_3-MgAl LDHs的更好;同时,添加少量LDHs可以提高复合材料的力学性能。  相似文献   

17.
Cyclodextrin microencapsulated ammonium polyphosphate (MCAPP) was prepared by the reaction between cyclodextrin (CD) and toluene-2,4-diisocyanate (TDI) with the goal of improving the water durability of APP and preparing a novel functional flame retardants. The Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) results indicated MCAPP were successfully prepared, and the water contact angle (WCA) results indicated that cyclodextrin resulted in the transformation of hydrophilic to hydrophobic of the flame retardant surface. The MCAPP was then incorporated into the ethylene vinyl acetate copolymer (EVA) system and the effects of the MCAPP on the mechanical, combustion, thermal, interfacial adhesion and flame-retardant properties of EVA cable were investigated and compared by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), limiting oxygen index (LOI), mechanical test, cone calorimeter and UL-94 test. The characterization for the various properties of EVA composites demonstrated that cyclodextrin microencapsulation technology could enhance the interfacial adhesion, resulting in the improved mechanical, thermal stability, combustion properties and flame-retardant properties compared with those of EVA/APP/CD system. Furthermore, the water resistance experiments results demonstrate that EVA/MCAPP composites have good water durability due to the hydrophobic property of MCAPP. Above all, the microencapsulation of APP with cyclodextrin developed in this study may be a promising formulation for combining the acid source, the carbonization agent and the blowing agent in one flame retardant, and the MCAPP can solve the water resistance and the compatibility problem of the flame retardant during the industrial application.  相似文献   

18.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

19.
通过纳米复合的方式,将微胶囊化的膨胀型阻燃体系—聚磷酸铵(APP)-季戊四醇(PER)与有机改性的片层蒙脱土(OMMT)用于协效阻燃乙烯-醋酸乙烯共聚物(EVA)。采用XRD、TEM、TGA、极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热仪、烟密度和动态机械热分析对微胶囊化APP(MCAPP)-微胶囊化PER(MCPER)-OMMT/EVA复合材料的结构与性能进行研究。研究结果表明,OMMT被完全剥离开,并以层离或插层的状态分散在EVA中;MCAPP-MCPER与OMMT之间存在明显的协效阻燃作用,用3wt%OMMT代替MCAPP-MCPER后,MCAPP-MCPER-OMMT/EVA复合材料的LOI值从25.5vol%提高到29.5vol%,垂直燃烧结果由V-2上升到V-0级别,残炭量也由14.5wt%增大到15.9wt%,烟密度由154.7 g/s降低到97.5 g/s,材料的阻燃性能得到有效提高。此外,万能拉伸测试及动态机械热分析测试表明,通过纳米复合制备的阻燃MCAPP-MCPER-OMMT/EVA复合材料具有更好的力学和动态热机械性能。   相似文献   

20.
High temperature titanium matrix composites (TMCs) with different volume fraction of reinforcements were insitu synthesized by casting and hot forging. An effort was made to investigate the mechanical properties as a function of the microstructure of composites. Tensile tests were performed at room temperature, 600 °C, 650 °C and 700 °C respectively. Creep behavior at 650 °C was characterized in the stress range of 200-300 MPa. Results indicated that the composite with 2.11 vol.% reinforcements had the highest tensile strength and lowest steady state creep rate. Morphology of TiB whiskers was critical to mechanical properties of TMCs. TiB whiskers fracture and debonding acted as the dominant failure modes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号