首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal behaviour of polystyrene composites reinforced with short sisal fibres was studied by means of thermogravimetric and dynamic mechanical thermal analysis. The thermal stability of the composites was found to be higher than that of sisal fibre and the PS matrix. The effects of fibre loading, fibre length, fibre orientation and fibre modification on the dynamic mechanical properties of the composites were evaluated. Fibre modifications were carried out by benzoylation, polystyrene maleic anhydride coating and acetylation of the fibre and the treatments improved the fibre-matrix adhesion. PS/sisal composites are thermally more stable than unreinforced PS and sisal fibre. The addition of 10% fibre considerably increases the modulus but the increase is found to level off at higher fibre loadings. The Tg values of the composites are lower than that of unreinforced PS and may be attributed to the presence of some residual solvents in the composites entrapped during the composite preparation. The treated-fibre composites show better properties than those of untreated-fibre composites. The Arrhenius relationship has been used to calculate the activation energy of the glass transition of the composites. A master curve is constructed based on time-temperature superposition principle.  相似文献   

2.
Solution styrene butadiene rubber (S-SBR) composites reinforced with graphene nanoplatelets (GnPs), expanded graphite (EG), and multiwalled carbon nanotubes (MWCNTs) were prepared and the electrical and various mechanical properties were compared to understand the specific dispersion and reinforcement behaviours of these nanostructured fillers. The electrical resistivity of the rubber composite gradually decreased with the increase of filler amount in the composite. The electrical percolation behaviour was found to be started at 15 phr (parts per hundred rubber) for GnP and 20 phr for EG filled systems, whereas a sharp drop was found at 5 phr for MWCNT based composites. At a particular filler loading, dynamic mechanical analysis and tensile test showed a significant improvement of the mechanical properties of the composites comprised of MWCNT followed by GnP and then EG. The high aspect ratio of MWCNT enabled to form a network at low filler loading and, consequently, a good reinforcement effect was observed. To investigate the effect of hybrid fillers, MWCNT (up to 5 phr) were added in a selected composition of EG based compounds. The formation of a mixed filler network showed a synergistic effect on the improvement of electrical as well as various mechanical properties.  相似文献   

3.
In the work the methodology and results of the investigations that concern rigid polyurethane foams modified with natural fibres and oil-based polyol are presented. The goal of the investigations was to obtain the cellular, polyurethane composites with the heat insulating and mechanical properties similar or better as in the case of the reference material. The obtained polyurethane composites had apparent densities about 40 kg/m3. The modified composites contained the considerable part of biodegradable components on the base of renewable raw materials. The influence of the rapeseed oil-based polyol, flax and hemp fibres of different length on the cell structure, closed cells content, apparent density, thermal conductivity and compression strength of the rigid polyurethane composites are analyzed. In the case of application of fibre in the amount of 5% php (per hundred polyols) the foam composites with the highest values of compressive strength and the lowest thermal conductivity were obtained.  相似文献   

4.
Starch-based biocomposites reinforced with jute (micro-sized fiber) and bacterial cellulose (BC) (nano-sized fiber) were prepared by film casting. Reinforcement in the composites is essentially influenced by fiber nature, and amount of loading. The optimum amount of fiber loading for jute and bacterial cellulose in each composite system are 60 wt% and 50 wt% (of starch weight), respectively. Mechanical properties are largely improved due to the strong hydrogen interaction between the starch matrix and cellulose fiber together with good fiber dispersion and impregnation in these composites revealed by SEM. The composites reinforced with 40 wt% or higher bacterial cellulose contents have markedly superior mechanical properties than those reinforced with jute. Young’s modulus and tensile strength of the optimum 50 wt% bacterial cellulose reinforced composite averaged 2.6 GPa and 58 MPa, respectively. These values are 106-fold and 20-fold more than the pure starch/glycerol film. DMTA revealed that the presence of bacterial cellulose (with optimum loading) significantly enhanced the storage modulus and glass transition temperature of the composite, with a 35 °C increment. Thermal degradation of the bacterial cellulose component occurred at higher temperatures implying improved thermal stability. The composites reinforced with bacterial cellulose also had much better water resistance than those associated with jute. In addition, even at high fiber loading, the composites reinforced by bacterial cellulose clearly retain an exceptional level of optical transparency owing to the effect of the nano-sized fibers and also good interfacial bonding between the matrix and bacterial cellulose.  相似文献   

5.
Graphene nanosheets (GNSs) reinforced poly(butylene succinate) (PBS) nanocomposites are facilely obtained by a solution-based processing method. Graphene nanosheets, which are derived from chemically reduced graphite oxide (GO), are characterized by AFM, TEM, XRD and Raman spectra. The state of dispersion of the GNSs in the PBS matrix is examined by SEM observations that reveals homogeneous distribution of GNSs in PBS matrix. A 21% increase in tensile strength and a 24% improvement of storage modulus are achieved by addition of 2.0 wt% of GNS. The electrical conductivity and thermal stability of the graphene-based nanocomposite are also improved. DSC measurement indicates that the presence of graphene sheets does not have a remarkable impact on the crystallinity of the nanocomposites. Therefore, the high performances of the nanocomposites are mainly attributed to the uniform dispersion of GNSs in the polymer matrix and strong interfacial interactions between both components.  相似文献   

6.
Replacing petroleum-based raw materials with renewable resources is now a major concern in terms of economical and environmental viewpoints. New innovative and biosourced polyamides based on dimer fatty acid (DAPA), and its composites (DAPAC) with pure cellulose short fibres (CF) were elaborated. The understanding of the mechanical behaviour of these new biomaterials is essential to consider their future applications. The high strain rate behaviour of DAPA and DAPAC were studied using split Hopkinson pressure bars (SHPB). Dynamic test were made for different strain rate and various temperatures. The dynamic properties results show an enhancement of the Young’s modulus, the yield stress, and the flow stress with increasing CF content. It was also found that both systems, neat DAPA and DAPAC, are highly thermo-dependent and mechanically sensitive. The increase of strain rate leads to the increase of polymer flow, with a very significant increase of strain hardening, indicating that the addition of CF does not change the ability of DAPA to plastically deform. The addition of CF has no remarkable effect on the strain rate sensitivity. The results also shows that the effective activation energy increase slightly with the CF content. Besides, the effective activation volume decreases slightly with increasing CF concentration, indicating that the chains mobility are relatively reduced in presence of filler. A micromechanically-model known as cooperative model based on the assumption that the yield stress is a thermal activation processes and the yield stress obeys to the strain rate/temperature superposition principle, was used to predict the dynamic compressive yield stress of both DAPA and DAPAC. The prediction of the yield stress is in very good agreement with the experimental data.  相似文献   

7.
Composites of polypropylene (PP) and high density polyethylene (HDPE) reinforced with 20 wt.% of curaua fibres were prepared using a twin-screw extruder and the effect of screw rotation speed (SRS) was evaluated by measuring the output, the mechanical properties of the composites, the morphology and the fibre dimensions. Increase in SRS causes a decrease in length, diameter and aspect ratio of the fibres in both composites, due to the high shear forces acting in the molten polymer and transferred to the fibres. Consequently, the reinforcement effect of the fibres decreased, as evidenced by the flexural and tensile mechanical properties of the composites. Additionally, polymeric matrices undergoes thermo-mechanical degradation during processing, this also contributed to the changes in the mechanical properties. Comparison between the matrices showed that PP composites are less affected by changes in SRS, suffering fewer changes in fibre dimensional parameters and in the mechanical properties than HDPE composites.  相似文献   

8.
Dimer fatty acid-based polyamides (DAPA) are reinforced with cellulose fibres (CF) from 5 to 20 wt.%. Thermal, morphological, dynamic mechanical and mechanical properties of the corresponding biocomposites (DAPAC) are investigated. They exhibit a high increase in glass transition temperature (Tg) and a decrease in the crystallisation temperature and crystallinity degree. This can be attributed to carbonyl (DAPA) and hydroxyl (CP) groups’ interactions. These hydrogen bonds reduce the polymer mobility. For instance, the dynamic mechanical spectra of these biocomposites reveal an increase in the stiffness and higher thermal–mechanical stability. Morphological observations reveal a moderate interfacial adhesion between the fibres and the matrix. With the increase of the fibre content, tensile tests show a high increase in Young modulus and yield stress, and a decrease of elongation at break. Predicted modulus results based on micromechanical models, Voigt and Reuss bounds and Halpin–Tsai approaches, are compared with the experimental values. They show that the Halpin–Tsai model can be used to quantify the mechanical properties for DAPA/CF biocomposites.  相似文献   

9.
Ternary composites of a biodegradable thermoplastic matrix, Mater-Bi® (MB), with various polyolefins (PP, HDPE and PS) and hemp fibres (H) were obtained by melt mixing and characterized by SEM, OM, DSC, TGA and tensile tests. The properties of composites were compared with those of MB/polyolefin and MB/H blends. Maleic anhydride functionalized polyolefins were employed as compatibilizers. Crystallization behaviour and morphology of the composites were found to be affected by the composition, phase dispersion and compatibilizer. Thermogravimetric analysis indicated that the thermal stability of the polyolefin phase and fibres was influenced by the composition and phase structure. A significant improvement of tensile modulus and strength was recorded for composites of MB with PE and PS as compared to MB/H composites. The results indicate that incorporation of polyolefins in the biodegradable matrix, compared to binary matrix/fibre system, may have significant advantages in terms of properties, processability and cost.  相似文献   

10.
In the given research paper, the effects of reinforcing polylactid (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biopolymers on the mechanical performance were studied. Both PLA and PHBV were compounded with man-made cellulose, jute and abaca fibres. The test bar specimens were processed via injection moulding. Various testing methods, including tensile and impact tests, were used to investigate the composites’ mechanical performance. Scanning electron microscopy was carried out to study the fibre–matrix interphasial adhesion. To determine the fibre-size distribution, optical microscopy was used. Finally, the obtained results were compared to composites on PP basis with the same reinforcing fibres.  相似文献   

11.
The thermal conductivity and thermal diffusivity of sisal-reinforced polyethylene (SRP), glass-reinforced polyethylene (GRP) and sisal/glass hybrid fibre-reinforced polyethylene (GSRP) has been evaluated at cryogenic to high temperature (120–350 K). It has been observed that the variation of thermal conductivity with temperature is almost the same for LDPE and SRP containing perpendicularly oriented sisal fibres. The difference between the values of thermal conductivity shown by LDPE and GRP is greater than that of SRP and LDPE. The enhanced thermal conductivity of glass fibre is due to the presence of Fe2+ ions in the glass fibres. The linear variation in thermal conductivity with fibre loading is explained with the help of a model suggested by Agari. The difference between the thermal conductivity properties in directions parallel and perpendicular to the applied flux is a maximum for SRP owing to the anisotropic nature of sisal fibre. The difference is marginal for GRP on account of its isotropic nature. The position of GSRP is found to be intermediate. It can been observed that the variation of thermal diffusivity with temperature is just opposite to that of thermal conductivity. This may be due to a reduction in the mean free path of phonons. An empirical equation is derived to explain the variation in thermal conductivity and thermal diffusivity with temperature.  相似文献   

12.
Poly(methyl methacrylate) (PMMA) nano composites were synthesized by melt compounding technique. Different graphite loadings were investigated, including some treated with poly(vinylidene fluoride) (PVDF). A homogeneous dispersion of graphite throughout the PMMA matrix was observed under microscopic analysis. Thermo-gravimetric analysis showed the incorporation of graphite resulted in improvement of thermal stability of neat PMMA. Dynamic mechanical thermal analysis also showed a significant improvement in the storage modulus over the temperature range of 25–150 °C. Coating the graphite with a small amount of PVDF was found to further extend the improvement in the modulus of the PMMA nano composite at 1 wt.% graphite loading.  相似文献   

13.
New biocomposites based on thermoplastic starch and bacterial cellulose   总被引:2,自引:0,他引:2  
Bacterial cellulose, produced by Acetobacter Xylinum, was used as reinforcement in composite materials with a starch thermoplastic matrix. The composites were prepared in a single step with cornstarch by adding glycerol/water as the plasticizer and bacterial cellulose (1% and 5% w/w) as the reinforcing agent. Vegetable cellulose was also tested as reinforcement for comparison purposes. These materials were characterized by different techniques, namely TGA, XRD, DMA, tensile tests, SEM and water sorption assays. All composites showed good dispersion of the fibers and a strong adhesion between the fibers and the matrix. The composites prepared with bacterial cellulose displayed better mechanical properties than those with vegetable cellulose fibers. The Young modulus increased by 30 and 17 fold (with 5% fibers), while the elongation at break was reduced from 144% to 24% and 48% with increasing fiber content, respectively for composites with bacterial and vegetable cellulose.  相似文献   

14.
In this study, wood polymer nanocomposites (WPNCS) were manufactured from five Malaysian tropical wood species by vacuum-impregnation attended by in situ polymerization using phenol–formaldehyde resin and montmorillomite nanoclay. Percentage weight gain and density of wood polymer nanocomposites depended on wood species. Thermo-mechanical properties of wood samples were investigated by the dynamic mechanical thermal analysis (DMTA) over the temperature range of −100 °C to 200 °C. The intrinsic properties of the components, morphology of the system and the nature of interface between the phases were also determined through DMTA test. Storage modulus (E′) of WPNC samples exhibited significant improvement over the temperature range, in both glassy region and rubbery plateau in relation to their corresponding raw wood samples and wood polymer composites (WPCs). Furthermore, damping (loss tan δ) peaks of all wood species were lowered by PF-Nanoclay system treatment, an indication of improved surface interphase of wood. Dynamic Young’s modulus (Ed) of wood was also calculated using free–free vibration testing. A significant increment was obtained for the PF-Nanoclay impregnated WPNC samples.  相似文献   

15.
To enhance the strength, ramie fibers aligned in vertical (V), horizontal (H) as well as both vertical and horizontal (X) directions were used to reinforce soy protein materials (SC), coded as VSC, HSC and XSC. The soy protein isolate was arylated with 2,2-diphenyl-2-hydroxyethanoic acid through the process of “dip-coating”, coded as SC-B. The SC and SC-B composite films were characterized by Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, dynamic mechanical thermal analysis, and tensile testing. Substantial improvement in the water uptake (from 100% to 25%) and the increased modulus (from 125 to 942 MPa) of the VSC-B composite were observed. This could be attributed to the formation of phase separation induced hydrophobic microparticles of DPHM on the surface of the SC-B films upon arylation, leading to the hydrophobicity. The thermal stability of the arylated composites increased compared to non-arylated ones. The VSC-B materials exhibited the highest water resistance and mechanical properties compared to HSC-B and XSC-B. Therefore, the arylation of SPI and alignment of the ramie fibers in the composites played an important role in the improvement of mechanical properties. This work provided a novel idea to improve the water resistance and modulus by reinforcing the protein matrix with natural fibers.  相似文献   

16.
The yield behaviour of dimer acid-based polyamides (DAPA) and DAPA reinforced with cellulose fibres (CF) was examined in this study. Both dynamic mechanical analysis (DMA) and tensile tests were used to follow the effect of strain rate or frequency, temperature and filler content on the transitions temperatures, the storage modulus and the yield stresses. The DMA results show that the storage modulus increases with increasing CF concentration. The tensile tests reveal that the yield stress is strain rate, temperature and CF concentration sensitive. Both activation enthalpy and activation volume calculated by the Eyring’s model reveal a slight increase of activation energy with increasing filler content and a decrease of the activation volume. A micromechanically-model was used to predict the yield stress of both DAPA and DAPA/cellulose composites. The model predictions of the yield stress are in good agreement with the experimental data.  相似文献   

17.
Recently, the mankind has realized that unless environment is protected, he himself will be threatened by the over consumption of natural resource as well as substantial reduction of fresh air produced in the world. Conservation of forests and optimal utilization of agricultural and other renewable resources like solar and wind energies, and recently, tidal energy have become important topics worldwide. In such concern, the use of renewable resources such as plant and animal based fibre-reinforce polymeric composites, has been becoming an important design criterion for designing and manufacturing components for all industrial products. Research on biodegradable polymeric composites, can contribute for green and safe environment to some extent. In the biomedical and bioengineered field, the use of natural fibre mixed with biodegradable and bioresorbable polymers can produce joints and bone fixtures to alleviate pain for patients. In this paper, a comprehensive review on different kinds of natural fibre composites will be given. Their potential in future development of different kinds of engineering and domestic products will also be discussed in detail.  相似文献   

18.
The effect of fiber loading on the properties of treated cellulose fiber-reinforced phenolic composites was evaluated. Alkali treatment of the fibers and reaction with organosilanes as coupling agents were applied to improve fiber–matrix adhesion. Fiber loadings of 1, 3, 5, and 7 wt% were incorporated to the phenolic matrix and tensile, flexural, morphological and thermal properties of the resulting composites were studied. In general, mechanical properties of the composites showed a maximum at 3% of fiber loading and a uniform distribution of the fibers in such composites was observed. Silane treatment of the fibers provided derived composites with the best thermal and mechanical properties. Meanwhile, NaOH treatment improved thermal and flexural properties, but reduced tensile properties of the materials. Therefore, the phenolic composite containing 3% of silane treated cellulose fiber was selected as the material with optimal properties.  相似文献   

19.
Penetration impact resistance is one of the key advantages of self-reinforced composites. This is typically measured using the same setup as for brittle fibre composites. However, issues with the test configuration for falling weight impact tests are reported. Similar issues have been found in literature for other composites incorporating ductile fibres. If the dimensions of the test samples are too small relative to the clamping device, then the test samples can heavily deform by wrinkling and necking. These unwanted mechanisms should be avoided as they absorb additional energy compared to properly tested samples. Furthermore, these mechanisms are found to occur more easily at lower compaction temperatures due to the lower interlayer bonding. In conclusions, the sample dimensions of ductile fibre composites should be carefully selected for penetration impact testing. If wrinkling or necking is observed, then the sample dimensions need to be increased.  相似文献   

20.
Composites made of polypropylene and man-made cellulose fibres that are intended for injection moulding applications show potential for use in sustainable and light weight engineering with high energy absorption capacity. Due to the thermal sensitivity of the cellulose fibres, process parameters play an important role during the injection moulding process. A polypropylene and a man-made cellulose fibre were chosen for this investigation. Effective melt temperatures between 200 °C and 269 °C were used to process the compounds into test specimens. Tensile, impact and colorimetric tests, as well as an SEM analysis, and a measurement of the fibre length distribution were carried out in order to characterise the mechanical and optical properties of the composites. It was observed that the fibre length becomes shorter above 256 °C and elongation at break and Charpy strength (notched) of the composites already decrease at lower temperatures than tensile strength. A direct correlation between mechanical properties and discoloration was not observed. Therefore, melt temperatures up to 250 °C are suitable for these composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号