首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Carbon materials, such as graphite oxides, carbon nanotubes and graphenes, have exceptional thermal conductivity, which render them excellent candidates as fillers in advanced thermal interface materials for high density electronics. In this paper, these carbon materials were functionalized with 4,4′-diaminodiphenyl sulphone (DDS), to enhance the bonding between the carbon materials and the resin matrix. Their visibly different properties were investigated. It seems that DDS-functionalization can obviously improve the interfacial heat transfer between the carbon materials and the epoxy matrix. The thermal conductivity enhancement of D-Graphene composites (0.493 W/m K) was about 30% higher than that of D-MWNTs composites (0.387 W/m K) at 0.5 vol.% loading. The different effects among EGO, D-EGO, MWNTs, D-MWNTs and D-Graphene in polymer composites were also discussed. It was demonstrated that DDS-functionalized carbon materials had an obvious effect on the thermal performances of composite materials and were more effective in thermal conductivity enhancement.  相似文献   

2.
Graphite nanoplatelet (GNP)/rubbery epoxy composites were fabricated by mechanical mixer (MM) and dual asymmetric centrifuge speed mixer (SM). The properties of the GNP/rubbery epoxy were compared with GNP/glassy epoxy composites. The thermal conductivity of GNP/rubbery epoxy composite (25 wt.% GNP, particle size 15 μm) reached 2.35 W m−1 K−1 compared to 0.1795 W m−1 K−1 for rubbery epoxy. Compared with GNP/rubbery epoxy composite, at 20 wt.%, GNP/glassy epoxy composite has a slightly lower thermal conductivity but an electrical conductivity that is 3 orders of magnitude higher. The viscosity of rubbery epoxy is 4 times lower than that of glassy epoxy and thus allows higher loading. The thermal and electrical conductivities of composites produced by MM are slightly higher than those produced by SM due to greater shearing of GNPs in MM, which results in better dispersed GNPs. Compression and hardness testing showed that GNPs increase the compressive strength of rubbery epoxy ∼2 times without significantly affecting the compressive strain and hardness. The GNP/glassy epoxy composites are 40 times stiffer than the GNP/rubbery epoxy composites. GNP/rubbery epoxy composites with their high thermal conductivity, low electrical conductivity, low viscosity before curing and high conformability are promising thermal interface materials.  相似文献   

3.
Polymeric composites with relatively high thermal conductivity, high dielectric permittivity, and a low dissipation factor are obtained in the present study. Three types of core-shell-structured aluminum (Al) particles are incorporated in poly(vinylidene fluoride) (PVDF) by melt-mixing and hot-pressing processes. The morphological, thermal, and dielectric properties of the composites are characterized using thermal analysis, a scanning electron microscope, and a dielectric analyzer. The results indicate that the Al particles decrease the degree of crystallinity of PVDF, and that the particle size and shape of the filler affect the thermal conductivity and dielectric properties of Al/PVDF. No variation in the dissipation factor is observed up to 60 wt.% Al. Thermal conductivity and dielectric permittivity values as high as 1.65 W/m K and 230, respectively, as well as a low dissipation factor of 0.25 at 0.1 Hz, are realized for the composites with 80 wt.% spherical Al.  相似文献   

4.
Highly-oriented polyoxymethylene (POM)/multi-walled carbon nanotube (MWCNT) composites were fabricated through solid hot stretching technology. With the draw ratio as high as 900%, the oriented composites exhibited much improved thermal conductivity and mechanical properties along the stretching direction compared with that of the isotropic samples before drawing. The thermal conductivity of the composite with 11.6 vol.% MWCNTs can reach as high as 1.2 W/m K after drawing. Microstructure observation demonstrated that the POM matrix had an ordered fibrillar bundle structure and MWCNTs in the composite tended to align parallel to the stretching direction. Wide-angle X-ray diffraction results showed that the crystal axis of the POM matrix was preferentially oriented perpendicular to the draw direction, while MWCNTs were preferentially oriented parallel to the draw direction. The strong interaction between the POM matrix and the MWCNTs hindered the orientation movement of molecules of POM, but induced the orientation movement of MWCNTs.  相似文献   

5.
We report the enchanced in situ performances of tensile strength and thermal conductivity at elevated temperatures of the PCS-free SiC/SiC composite with a high fiber volume fraction above 50% fabricated by NITE process for nuclear applications. The composite was fabricated by the optimized combination of the fiber coating, the matrix slurry and the pressure-sintering conditions, based on our previous composites’ study history. The composite showed the excellent tensile strength up to 1500 °C, that it retained approximately 88% of the room-temperature strength. Also, the thermal conductivity of the composites represented over 20 W/m K up to 1500 °C, which was enough high to take the advantage of the assumed design value for nuclear applications. Microstructural observation indicated that the excellent high-temperature performances regarding tensile strength and thermal conductivity up to 1500 °C were the contribution to the high densification and crystalline structure in matrix.  相似文献   

6.
Diamond-Cu composites from the direct combination of diamond and Cu show low thermal conductivities due to weak interface and high thermal resistance as a result of chemical incompatibility. In this paper, a new method is proposed to strengthen interfacial binding between diamond and Cu by coating strong carbide-forming elements, e.g., Ti or Cr on the surface of the diamond through vacuum micro-deposition. Interfacial thermal resistance of diamond-Cu composites is greatly decreased when diamond particles are coated by a Cr or Ti layer of a certain thickness before combining with Cu. Thermal conductivity is also increased several times. Cr coating can reduce more effectively interface thermal resistance between diamond and Cu than Ti coating. Moreover, it has a smaller negative impact on the thermal conductivity of the Cu matrix, resulting in higher thermal conductivity of Cr-coated diamond-Cu composites. Through the vacuum micro-deposition technology, Cr on the diamond particle surface is present in the form Cr7C3 near diamond and a pure Cr outer layer at 2:1. The optimum thickness is within 0.6-0.9 μm; at this depth, the thermal conductivities of 70 vol% diamond-Cu composites can be increased four times and reach as high as 657 W/m K. In this work, an original theoretical model is proposed to estimate the thermal conductivities of composite materials with an interlayer of a certain thickness. The predicted values from this model are in good agreement with the experimental values.  相似文献   

7.
Aligned carbon nanotubes (CNTs) are implemented into alumina-fiber reinforced laminates, and enhanced mass-specific thermal and electrical conductivities are observed. Electrical conductivity enhancement is useful for electrostatic discharge and sensing applications, and is used here for both electromagnetic interference (EMI) shielding and deicing. CNTs were grown directly on individual fibers in woven cloth plies, and maintained their alignment during the polymer (epoxy) infiltration used to create laminates. Using multiple complementary methods, non-isotropic electrical and thermal conductivities of these hybrid composites were thoroughly characterized as a function of CNT volume/mass fraction. DC and AC electrical conductivity measurements demonstrate high electrical conductivity of >100 S/m (at 3% volume fraction, ∼1.5% weight fraction, of CNTs) that can be used for multifunctional applications such as de-icing and electromagnetic shielding. The thermal conductivity enhancement (∼1 W/m K) suggests that carbon-fiber based laminates can significantly benefit from aligned CNTs. Application of such new nano-engineered, multi-scale, multi-functional CNT composites can be extended to system health monitoring with electrical or thermal resistance change induced by damage, fire-resistant structures among other multifunctional attributes.  相似文献   

8.
Poly(methyl methacrylate) (PMMA) nano composites were synthesized by melt compounding technique. Different graphite loadings were investigated, including some treated with poly(vinylidene fluoride) (PVDF). A homogeneous dispersion of graphite throughout the PMMA matrix was observed under microscopic analysis. Thermo-gravimetric analysis showed the incorporation of graphite resulted in improvement of thermal stability of neat PMMA. Dynamic mechanical thermal analysis also showed a significant improvement in the storage modulus over the temperature range of 25–150 °C. Coating the graphite with a small amount of PVDF was found to further extend the improvement in the modulus of the PMMA nano composite at 1 wt.% graphite loading.  相似文献   

9.
Composites of Kraton-D® 1102 BT (a styrene–butadiene–styrene block copolymer) and multi-walled carbon nanotubes (MWCNTs) were prepared by melt mixing. The composites were characterized by electrical conductivity measurements (Coleman’s method), mechanical properties (DMA and stress–strain tests), thermal stability (thermogravimetry) and morphology of dispersion (SEM). Finally, the resulting composites were compared with those made by the solution casting method. The results showed a strong influence of the preparation methodology on the final properties of the composites due to changes in morphology. Composites prepared by casting showed a higher electrical conductivity than extruded ones; the composites with 6 wt.% of MWCNT prepared by extrusion presented conductivity of the same order of magnitude as the composite with 1 wt.% of MWCNT prepared by casting – 10−3 to 10−4 S cm−1. However, the extruded samples presented better mechanical properties than the casting ones.  相似文献   

10.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

11.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

12.
We demonstrate a water-based method to fabricate strong, electrically and thermally conductive hybrid thin films (papers) made from the combination of graphene nanoplatelets (GnP) and cellulose nanocrystals (CNC). Unpressed and hot-pressed GnP papers containing CNC ranging from 0 wt% to 25 wt% were prepared. It is found that the GnP is well aligned within the hybrid paper, and a higher degree of alignment is induced by the hot-pressing process. The mechanical properties of the resulting papers increased with increasing content of CNC. The hot-pressed 25 wt% CNC hybrid paper showed the best mechanical properties among all the papers studied and improved the tensile strength by 33% and the modulus by 57% compared to neat GnP paper. Both the highest in-plane and though-plane thermal conductivity of 41 W/m K and 1.2 W/m K were measured respectively for the hot-pressed 15 wt% CNC hybrid paper. The electrical conductivity decreased continuously with increasing content of CNC but the thin film was still conductive at the highest CNC content in this study. The low-cost, environmental-friendly, thermally and electrically conductive flexible GnP/CNC hybrid papers have a set of properties making them suitable for many potential applications.  相似文献   

13.
14.
Composites of thermoplastic polyurethane (TPU) and ultra-thin graphite (UTG) with concentrations ranging from 0.5 wt.% to 3 wt.% were prepared using a solution compounding strategy. Substantial reinforcing effects with increased loadings are achieved. Compared to neat TPU, values for storage modulus and shear viscosity are enhanced by 300% and 150%, respectively, for UTG concentrations of 3 wt.%. Additionally, an enhancement of thermal properties is accomplished. The crystallization temperature and thermal stability increased by 30 °C and 10 °C, respectively, compared to neat TPU. Furthermore, the use of oxidized UTG (UTGO) with its added functional oxygen groups suggests the presence of chemical interactions between UTG and TPU, which additionally impact on the thermal properties of the corresponding composites. Controlling the oxidation degree, thus offers further possibilities to obtain composites with tailored properties. The presented approach is straightforward, leads to homogeneous TPU-UTG composites with improved materials properties and is especially suitable for commercial UTG materials and further up-scaled production.  相似文献   

15.
Functionalized graphene nanosheets (f-GNSs) produced by chemically grafting organosilane were synthesized by a simple covalent functionalization with 3-aminopropyl triethoxysilane. The f-GNSs showed a larger thickness, but smaller width and than the un-treated graphene. The covalent functionalization of graphene with silane was favorable for their homogeneous dispersion in the polymer matrix even at a high nanofiller loading (1 wt.%). The initial thermal degradation temperature of epoxy composite was increased from 314 °C to 334 °C, at a f-GNS content of 1 wt.%. Meanwhile, the addition of 1 wt.% f-GNSs increased the tensile strength and elongation to failure of epoxy resins by 45% and 133%, respectively. This is believed to be attributed to the strong interfacial interactions between f-GNSs and the epoxy resins by covalent functionalization. The experimentally determined Young’s modulus corresponded well with theoretical simulation under the hypothesis that the graphene sheets randomly dispersed in the polymer matrix.  相似文献   

16.
To overcome the brittleness and the pyrolysis shrinkage of carbon aerogels, carbon fiber reinforced composites were prepared by copyrolysis of polyacrylonitrile fiber reinforced resorcinol-formaldehyde aerogel composites (PAN/RFs). The PAN/RFs were obtained by impregnating the PAN fiber felt with RF sol and then supercritical drying. Upon carbonization the PAN fiber shrinks with the RF aerogel, thus reducing the shrinkage differences between the fiber and the aerogel, and results in crack-free carbon fiber reinforced carbon aerogel composites, with a thermal conductivity of 0.073 W/m K at 25 °C in air. Our new method may greatly expand the usage of carbon aerogels in general applications.  相似文献   

17.
Novel silicon carbide/polypyrrole (SiC/PPy) conducting composites were prepared using silicon carbide as inorganic substrate. The surface modification of SiC was performed in aqueous solution by oxidative polymerization of pyrrole using ferric chloride as oxidant. Elemental analysis was used to determine the mass loading of polypyrrole in the SiC/PPy composites. Scanning electron microscopy showed the surface modification of SiC by PPy. PPy in composites was confirmed by the presence of PPy bands in the infrared spectra of SiC/PPy containing various amounts of conducting polymer. The conductivity of SiC/PPy composites depends on PPy content on the surface. The composite containing 35 wt.% PPy showed conductivity about 2 S cm−1, which is in the same range as the conductivity of pure polypyrrole powder prepared under the same conditions using the same oxidant. PPy in the composites was clearly detected by X-ray photoelectron spectroscopy (XPS) measurements by its N1s and Cl2p peaks. High resolution scans of the C1s regions distinguished between silicon carbide and polypyrrole carbons. The fraction of polypyrrole at the composite surface was estimated from the silicon and nitrogen levels. The combination of XPS and conductivity measurements suggests that the surface of the SiC/PPy composites is polypyrrole-rich for a conducting polymer mass loading of at least 12.6 wt.%.  相似文献   

18.
Highly porous biocompatible composites made of polycaprolactone (PCL) and 45S5 Bioglass® (BG) were prepared by a solid–liquid phase separation method (SLPS). The composites were obtained with BG weight contents varying in the range 0–50%, using either dimethylcarbonate (DMC) or dioxane (DIOX) as solvent, and ethanol as extracting medium. The porosity of the scaffolds was estimated to be about 88–92%. Mechanical properties showed a dependence on the amount of BG in the composites, but also on the kind of solvent used for preparation, composites prepared with DIOX showing enhanced stress at deformation with respect to composites prepared with DMC (stress at 60% of deformation being as high as 214 ± 17 kPa for DIOX-prepared composites and 98 ± 24 kPa for DMC-prepared ones, with 50 wt/wtPCL% of glass), as well as higher elastic modulus (whose value was 251 ± 32 kPa for DIOX-prepared scaffolds and 156 ± 36 kPa for DMC-prepared ones, always with 50 wt/wtPCL% of glass). The ability of the composites to induce precipitation of hydroxyapatite was positively evaluated by means of immersion in simulated body fluid and the best results were achieved with high glass amounts (50 wt/wtPCL%). In vitro tests of cytotoxicity and osteoblast proliferation showed that, even if the scaffolds are to be considered non-cytotoxic, cells suffer from the scarce wettability of the composites.  相似文献   

19.
Polymethyl methacrylate (PMMA) composites filled with Aluminum Nitride (AlN) were prepared by powder processing technique. The microstructures of the composites were investigated by scanning electron microscopy techniques. The effect of AlN filler content (0.1–0.7 volume fraction (vf)) on the thermal conductivity, relative permittivity, and dielectric loss were investigated. As the vf of AlN filler increased, the thermal conductivity of the specimens increased. The thermal conductivity and relative permittivity of AlN/PMMA composites with 0.7 vf AlN filler were improved to 1.87 W/(m K) and 4.4 (at 1 MHz), respectively. The experimental thermal conductivity and relative permittivity were compared with that from simulation model.  相似文献   

20.
Copper/carbon nanofibre composites containing titanium varying from 0.3 wt.% to 5 wt.% were made, and their thermal conductivities measured using the laser flash technique. The measured thermal conductivities were much lower than predicted. The difference between measured and predicted values has often been attributed to limited heat flow across the interface. A study has been made of the composite microstructure using X-ray diffraction, transmission electron microscopy and Raman spectroscopy. It is shown in these materials, that the low composite thermal conductivity arises primarily because the highly graphitic carbon nanofibre structure transforms into amorphous carbon during the fabrication process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号