首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional polypropylene (PP) nanocomposites were prepared by melt compounding with multiwalled carbon nanotubes (MWNT) as the electrically conductive component and barium titanate (BT) spherical nanoparticles as the ferroelectric component. To make PP electrically conductive, more than 3 wt.% MWNT is required. Surface modification of either MWNT or BT with titanate coupling agent further improves the electrical conductivity of the PP/MWNT/BT ternary nanocomposites. Interestingly, by modifying both MWNT and BT, 2 wt.% MWNT are sufficient to make the ternary nanocomposite electrically conductive. In addition, the incorporation of MWNT greatly increases the dielectric permittivity of PP/BT nanocomposites. However, to retain a low dielectric loss, the MWNT loading should be slightly less than the percolation threshold of the nanocomposites. The improved electrical conductivity and dielectric properties make the ternary nanocomposites attractive in practical applications.  相似文献   

2.
Carbon nanofibers dispersed β-SiC (CNFs/SiC) nanocomposites were prepared by hot-pressing via a transient eutectic phase route at 1900 °C for 1 h under 20 MPa in Ar. The effects of additional CNFs content between 1 and 10 wt.% were investigated, based on densification, microstructure, thermal and mechanical properties. The CNFs/SiC nanocomposites by the CNFs contents below 5 wt.% exhibited excellent relative densities over 98% with well dispersed CNFs. However, the CNFs/SiC nanocomposites containing the CNFs of 10 wt.% possessed a relative density of 92%, accompanying CNFs agglomerates and many pores located inside the agglomerates. The three point bending strength gradually decreased with the increase of CNFs content, but the indentation fracture toughness increased to 5.7 MPa m1/2 by the CNFs content of 5 wt.%. The thermal conductivity was enchanced with the increase of CNFs content and represented a maximum value of 80 W/mK at the CNFs content of 5 wt.%.  相似文献   

3.
This study aims to investigate experimentally the effects of aspect ratio (length/diameter ratio) and concentration of multiwalled carbon nanotubes (MWCNTs) on thermal properties of high density polyethylene (HDPE) based composites. The aspect ratios of two types of MWCNT fillers are in the range of 200–400 and 500–3000. Composite samples were prepared by melt mixing up to weight fraction of 19% filler content, followed by a compression molding. Measurements of density, specific heat and thermal diffusivity (by modulated photothermal radiometry, PTR) were performed and effective thermal conductivities ke of nanocomposites were calculated using these values. The results show that the composites containing MWCNTs with higher aspect ratio have higher thermal conductivities than the ones with lower aspect ratio. In terms of conductivity enhancement ke/km  1, the results indicate that MWCNTs with higher aspect ratio provide three to fourfold larger enhancement than the ones with lower aspect ratio, at low filler concentrations.  相似文献   

4.
Dodecyl sulfate (DS), one kind of sulfate anion, was intercalated in the interlayer space between CoAl layered double hydroxide (CoAl-LDH) layers, and then polyurethane (PU) based nanocomposites were prepared by in situ intercalation polymerization with different amounts of the organo-modified CoAl-LDH. An exfoliated dispersion of CoAl-LDH layers in PU matrix was verified by the disappearance of the (0 0 3) reflection of the XRD results when the LDH loading was less than 2.0 wt%. Tensile testing indicated that excellent mechanical properties of PU/LDH nanocomposites were achieved. The weak alkaline catalysis of DS to polyurethane chains, combined with the dehydration and structural degradation of the LDH below 300 °C, accounted for the process of proceeded degradation as shown in TGA results. The real-time FTIR revealed that the as-prepared nanocomposites had a slower thermo-oxidative rate than neat PU from 160 °C to 340 °C, probably due to the barrier effect of LDH layers. These results suggested potential applications of CoAl-LDH as a promising flame retardant in PUs.  相似文献   

5.
Carbon materials, such as graphite oxides, carbon nanotubes and graphenes, have exceptional thermal conductivity, which render them excellent candidates as fillers in advanced thermal interface materials for high density electronics. In this paper, these carbon materials were functionalized with 4,4′-diaminodiphenyl sulphone (DDS), to enhance the bonding between the carbon materials and the resin matrix. Their visibly different properties were investigated. It seems that DDS-functionalization can obviously improve the interfacial heat transfer between the carbon materials and the epoxy matrix. The thermal conductivity enhancement of D-Graphene composites (0.493 W/m K) was about 30% higher than that of D-MWNTs composites (0.387 W/m K) at 0.5 vol.% loading. The different effects among EGO, D-EGO, MWNTs, D-MWNTs and D-Graphene in polymer composites were also discussed. It was demonstrated that DDS-functionalized carbon materials had an obvious effect on the thermal performances of composite materials and were more effective in thermal conductivity enhancement.  相似文献   

6.
We herein report the effects of interfacial reinforcement on mechanical and electrical properties of nanocomposites based on polylactide (PLA) and multi-walled carbon nanotube (MWCNT). For this purpose, a series of MWCNTs grafted with PLA chains of various lengths (MWCNT-g-PLAs) were prepared by ring-opening polymerization of l-lactide with carboxylic acid-functionalized MWCNT (MWCNT-COOH). MWCNT-g-PLAs were then mixed with commercial PLA to obtain PLA/MWCNT-g-PLA nanocomposites with 1.0 wt.% MWCNT content. It was revealed that morphological, mechanical, and electrical properties of PLA/MWCNT-g-PLA nanocomposites were strongly dependent on the PLA chain length of MWCNT-g-PLAs. FE-SEM images exhibited that the nanocomposites containing MWCNT-g-PLA with longer PLA chain length exhibited better dispersion of MWCNTs in the PLA matrix. Initial moduli and tensile strengths of PLA/MWCNT-g-PLA composites increased with the increment of chain length of PLA grafted on MWCNTs, which attributes to the improved interfacial adhesion between the grafted PLA chains of MWCNT-g-PLA and the PLA matrix. As a result, the experimental initial modulus (2775 ± 193 MPa) of the nanocomposite including MWCNT-g-PLA with PLA chains of average molecular weight of 530 g/mol was quite close to the theoretical value (2911 MPa) predicted for the nanocomposite with perfect interfacial adhesion. Unexpectedly, electrical resistivities of PLA/MWCNT-g-PLA nanocomposites were found to increase from ∼104 to ∼1012 Ω/sq with increasing the PLA chain length of MWCNT-g-PLA, which is due to the fact that the PLA chains grafted on MWCNTs prevent the formation of the electrical conduction path of MWCNTs in the PLA matrix.  相似文献   

7.
Two types of montmorillonite (MMT), natural sodium montmorillonite (Na-MMT) and organically modified montmorillonite (OMMT), in different amounts of 1, 2, 5, 10 and 25 phr (parts per hundred resin), were dispersed in rigid poly (vinyl chloride) by two different methods: solution blending and solution blending + melt compounding. The effects on morphology, thermal and mechanical properties of the PVC/MMT nanocomposites were studied by varying the amount of Na-MMT and OMMT in both methods. SEM and XRD analysis revealed that possible intercalated and exfoliated structures were obtained in all of the PVC/MMT nanocomposites. Thermogravimetric analysis revealed that PVC/Na-MMT nanocomposites have better thermal stability than PVC/OMMT nanocomposites and PVC. In general, PVC/MMT nanocomposites prepared by solution blending + melt compounding revealed improved thermal properties compared to PVC/MMT nanocomposites prepared by solution blending. Vicat tests revealed a significant decrease in Vicat softening temperature of PVC/MMT nanocomposites prepared by solution blending + melt compounding compared to unfilled PVC.  相似文献   

8.
This paper presents a preliminary investigation on the effects of incorporating carbon nanotubes (CNT) into polyamide-6 (PA6) on mechanical, thermal properties and fire performance of woven glass reinforced CNT/PA6 nanocomposite laminates. The samples were characterized by tensile and flexural tests, thermal gravimetric analysis (TGA), heat distortion temperature (HDT) measurements, thermal conductivity and cone calorimeter tests. Incorporation of up to 2 wt% CNT in CNT/PA6/GF laminates improved the flexural stress of the laminates up to 36%, the thermal conductivity by approximately 42% and the ignition time and peak HRR time was delayed by approximately 31% and 118%, respectively.  相似文献   

9.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs.  相似文献   

10.
1.5 vol.% and 4.5 vol.% carbon nanotubes reinforced 2009Al (CNT/2009Al) composites with homogeneously dispersed CNTs and refined matrix grains, were fabricated using powder metallurgy (PM) followed by 4-pass friction stir processing (FSP). Tensile properties of the composites between 293 and 573 K and the coefficient of thermal expansion (CTE) from 293 to 473 K were tested. It was indicated that load transfer mechanism still takes effect at temperatures elevated up to 573 K, thus the yield strength of the 1.5 vol.% CNT/2009Al composite at 423–573 K, was enhanced compared with the 2009Al matrix. However, for the 4.5 vol.% CNT/2009Al composite, the yield strength at 573 K was even lower than that for the matrix, due to the quicker softening of ultrafine-grained matrix. Compared with the 2009Al matrix, the CTEs of the composites were greatly reduced for the zero thermal expansion and high modulus of the CNTs and could be well predicted by the Schapery’s model.  相似文献   

11.
The effect of hexamethylene disilazane modified nanosilica on the dynamic mechanical analysis (DMA), crystallization, melting and thermal degradation behavior of linear low density polyethylene/ethylene vinyl acetate copolymer (LLDPE/EVA) blends are explored.Detailed DMA analysis is carried out in order to investigate the reinforcing behavior of nanosilica adopting Kerner–Nielson model. Oxidative degradation and thermal stabilities of samples are also studied by the thermogravimetery analysis. The high content of nanosilica particles results in significant shift of degradation temperature to higher temperatures in the oxygen atmosphere. This behavior might be attributed to the barrier properties of nanoparticles against oxygen and gaseous degradation products. However, incorporation of modified nanosilica into LLDPE/EVA blend is decreased the onset of degradation temperature of the unfilled system. In nitrogen atmosphere, no changes are observed in the thermal degradation range and only a reduction is documented in the onset of degradation temperature. Considering important role of onset of degradation temperature, activation energy of starting of degradation temperature is calculated utilizing Kissinger-Ozawa model in both oxygen and nitrogen atmospheres. Results showed that activation energy of degradation reaction is decreased by ∼ 20 kJ/mol. This decrease is owing to the release of modifiers from the nanoparticles.  相似文献   

12.
A series of composites based on polylactide (PLA), have been prepared by melt-blending with multiwalled carbon nanotubes (MWNT) and Tri(1-hydroxyethyl-3-methylimidazolium chloride) phosphate (IP) functionalized MWNT (MIP). The morphology, thermal stability and burning behavior of the composites were investigated by Field Emission Scanning Electron Microscopy (FESEM), Thermogravimetric Analysis (TGA) and Cone Calorimeter Test (CCT), respectively. Significant improvement in fire retardant performance was observed for the PLA/MIP composite from CCT (reducing both the heat release rate and the total heat release) and TGA (increasing the char residue) compared to PLA/MWNT. SEM and Raman spectroscopy were utilized to explore the surface morphology and chemical structure of the char residues. It revealed that the catalytic charring effect of IP, the physical crosslinking effect of MWNT, and the combined effect of both IP and MWNT (forming continuous and compact char layers) were very efficient in improving the flame retarding properties of PLA/MIP composite.  相似文献   

13.
The grafting of poly(ethylene glycol)-block-polyacrylonitrile (PEG-b-PAN) amphiphilic block polymer onto multi-walled carbon nanotubes (MWCNTs) was achieved by combination of coupling reaction and redox radical polymerization. The chemical structure and yield of the resulting grafted polymer were characterized and confirmed by FT-IR and TGA. Transmission electron microscopy (TEM) images clearly indicated that the nanotubes were coated with a polymer layer. The concentrated DMF dispersions of MWCNT-g-(PEG-b-PAN) nanocomposite were stable for months, the viscoelasticity being monitored by rheometer. MWCNT-g-(PEG-b-PAN) hybrid nanocomposite membranes were fabricated by phase inversion in a wet process. The results showed that high concentration of MWCNTs could be dispersed in the polymer matrix. The morphology and surface hydrophilicity characteristics of the membrane could be controlled by the composition of MWCNT-g-(PEG-b-PAN) nanocomposite membrane.  相似文献   

14.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

15.
ZnO nanoparticles were prepared using zinc chloride and sodium hydroxide in chitosan medium. Prepared ZnO (NZO) and commercial ZnO (CZO) was characterized by scanning electron microscopic and X-ray diffraction studies. PP/ZnO nanocomposites were prepared using 0–5 wt% of zinc oxide by melt mixing. It was then compression moulded into films. Transparency of the composite films were improved by reducing the crystallite size of ZnO. Melt flow index studies revealed that NZO increased the flow characteristics of PP while CZO decreased. X-ray diffraction studies indicated α-form of isotactic polypropylene. An increase in mechanical properties, dynamic mechanical properties and thermal stability of the composites were observed by the addition of ZnO. Uniform dispersion of the ZnO was observed in the scanning electron micrographs of the tensile fractured surface of composites.  相似文献   

16.
An effective carbon fiber/graphene oxide/carbon nanotubes (CF-GO-CNTs) multiscale reinforcement was prepared by co-grafting carbon nanotubes (CNTs) and graphene oxide (GO) onto the carbon fiber surface. The effects of surface modification on the properties of carbon fiber (CF) and the resulting composites was investigated systematically. The GO and CNTs were chemically grafted on the carbon fiber surface as a uniform coating, which could significantly increase the polar functional groups and surface energy of carbon fiber. In addition, the GO and CNTs co-grafted on the carbon fiber surface could improve interlaminar shear strength of the resulting composites by 48.12% and the interfacial shear strength of the resulting composites by 83.39%. The presence of GO and CNTs could significantly enhance both the area and wettability of fiber surface, leading to great increase in the mechanical properties of GO/CNTs/carbon fiber reinforced composites.  相似文献   

17.
18.
This communication reported the substantial improvement in the mechanical and thermal properties of a polyurethane (PU) resulting from the incorporation of well-dispersed graphene oxide (GO). The stress transfer benefited from the covalent interface formed between the PU and GO. The Young’s modulus of the PU was improved by ∼7 times with the incorporation of 4 wt% GO, and the improvement of ∼50% in toughness was achieved at 1 wt% loading of GO without losing elasticity. Significant improvements were also demonstrated in the hardness and scratch resistance measured by nano-indentation. Thermogravimetric analysis revealed that the decomposition temperature was increased by ∼50 °C with the addition of 4 wt% GO.  相似文献   

19.
Uniform treatment of multiwalled carbon nanotubes by plasma treatment has been investigated using a custom-built stirring plasma system. A thin plasma polymer with high levels of amine groups has been deposited on MWCNTs using a combination of continuous wave and pulsed plasma polymerization of heptylamine in the stirring plasma system. Scanning electron microscopy showed that the plasma polymerization improved the dispersion and interfacial bonding of the MWCNTs with an epoxy resin at loadings of 0.1, 0.3 and 0.5 wt%. The flexural and thermal mechanical properties of plasma polymerized MWCNT/epoxy nanocomposites were also significantly improved while untreated MWCNT/epoxy nanocomposites showed an opposite trend. The epoxy with 0.5 wt% plasma polymerized MWCNTs had the greatest increase in flexural properties, with the flexural modulus, flexural strength and toughness increasing by about 22%, 17% and 70%, respectively.  相似文献   

20.
Highly filled polybenzoxazine nanocomposites filled with nano-SiO2 particles were investigated for their mechanical and thermal properties as a function of filler loading. The nanocomposites were prepared by high shear mixing followed by compression molding. A very low A-stage viscosity of benzoxazine monomer gives it excellent processability having maximum nano-SiO2 loading as high as 30 wt% (18.8 vol%) with negligible void content. Moreover, thermal analysis of the curing process of the compound of the PBA-a/nano-SiO2 composites was found to be autocatalytic in nature with average activation energy of 79–92 kJ mol−1. Microscopic analysis (SEM) performed on the PBA-a/nano-SiO2 composite fracture surface indicated a nearly homogeneous distribution of the nano-scaled silica in the polybenzoxazine matrix. In addition, the enhancement in storage modulus of the nano-SiO2 filled polybenzoxazine composites was found to be significantly higher than that of the recently reported nano-SiO2 filled epoxy composites. The dependence of the nanocomposites’ modulus on the nano-SiO2 particles content is well fitted by the generalized Kerner equation. Furthermore, the relatively high micro-hardness of the PBA-a/nano-SiO2 composites up to about 600 MPa was achieved. Finally, the substantial enhancement in the glass transition temperature (Tg) of the PBA-a/nano-SiO2 composites was also observed with the ΔTg up to 16 °C at the nano-SiO2 loading of 30 wt%. The resulting PBA-a/nano-SiO2 composite is a highly attractive candidate as coating material in electronic packaging or other related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号