首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel particles-compositing method was used for the first time to disperse different contents of multi-walled carbon nanotubes (CNTs) in micron sized copper powders, which were subsequently consolidated into CNT/Cu composites by spark plasma sintering (SPS). Microstructural observations showed that the homogeneous distribution of CNTs and dense composites could be obtained for 0–10 vol.% CNT contents. The CNT clusters were appeared in the powder mixture with 15 vol.% CNTs, which resulted in an insufficient densification of the composites. The effective thermal conductivity of the composites was analyzed both theoretically and experimentally. The addition of CNTs showed no enhancement in overall thermal conductivity of the composites due to the interface thermal resistance associated with the low phase contrast of CNT to copper and the random tube orientation. Besides, the composite containing 15 vol.% CNTs led to a rather low thermal conductivity due possiblely to the combined effect of unfavorable factors induced by the presence of CNT clusters, i.e. large porosity, lower effective conductivity of CNT clusters themselves and reduction of SPS cleaning effect. The CNT/Cu composites may be a promising thermal management material for heat sink applications.  相似文献   

2.
Pure titanium matrix composite reinforced with carbon nanotubes (CNTs) was prepared by spark plasma sintering and hot extrusion via powder metallurgy process. Titanium (Ti) powders were coated with CNTs via a wet process using a zwitterionic surfactant solution containing 1.0, 2.0 and 3.0 wt.% of CNTs. In situ TiC formation via reaction of CNTs with titanium occurred during sintering, and TiC particles were uniformly dispersed in the matrix. As-extruded Ti/TiCs composite rods were annealed at 473 K for 3.6 ks to reduce the residual stress during processing. After annealing process, the tensile properties of the composites were evaluated at room temperature, 473, 573 and 673 K, respectively. Hardness test was also performed at room temperature up to 573 K with a step of 50 K. The mechanical properties of extruded Ti/CNTs composites at elevated temperature were remarkably improved by adding a small amount of CNTs, compared to extruded Ti matrix. These were due to the TiC dispersoids originated from CNTs effectively stabilized the microstructure of extruded Ti composites by their pinning effect. Moreover, the coarsening and growth of Ti grain never occurred even though they were annealed at 573, 673 K for 36 ks and 673 K for 360 ks, respectively.  相似文献   

3.
In this work, Mg/Al–CNT nano-composites were fabricated using powder metallurgy route involving microwave assisted rapid sintering and hot extrusion. Ball milled Al–CNT particles comprising different contents of CNTs coated with fixed amount of Al were used for strengthening. Microstructural characterization of these Mg/Al–CNT nano-composites reveal reasonably uniform distribution of Al–CNT particles up to CNT content of 0.30% by weight, significant grain refinement and the presence of minimal porosity compared to monolithic Mg. Importantly, for the nominally identical processing conditions, the textures of as-extruded nano-composite specimens is significantly influenced by the presence of Al–CNT particles. Nano-composite configurations exhibit different tensile and compressive response as a function of CNT content. Among the different Mg/Al–CNT formulations synthesized, the Mg/Al–CNT configuration with Al–CNT particles composition of 1.00% Al and 0.30% CNT by weight (Mg/1.00Al–0.30CNT) exhibit higher tensile yield strength (0.2% YS), ultimate tensile strength (UTS) and failure strain (FS) (up to +72%, +48%, +9%, respectively) compared to monolithic Mg.  相似文献   

4.
Weiwei Chen  Wei Gao 《Composites Part A》2011,42(11):1627-1634
A highly-dispersed TiO2 nano-particles reinforced Ni–TiO2 composite was prepared by sol-enhanced composite electroplating. The microstructure, thermal stability and tensile properties of the sol-enhanced and traditional Ni–TiO2 composites were explicitly compared. TiO2 nano-particles agglomerated to large clusters of ∼400 nm in the traditional Ni–TiO2 composite. In contrast, nano-sized TiO2 particles (∼15 nm) were distributed at grain boundaries in the sol-enhanced composite. The grain size, higher micro-strain (∼0.31%) and higher microhardness (∼407 HV50) of the sol-enhanced Ni–TiO2 composite were stabilized up to 250 °C compared to 150 °C of the traditional composite. The sol-enhanced Ni–TiO2 composite showed a much higher tensile strength of ∼1050 MPa compared to ∼610 MPa of the traditional composite. The lattice diffusion dominated at high temperatures during grain growth for the sol-enhanced composite. The distribution and location of TiO2 nano-particles played a significant role in determining the thermal stability and tensile behaviors.  相似文献   

5.
The mechanical and thermo-mechanical properties of polybenzoxazine nanocomposites containing multi-walled carbon nanotubes (MWCNTs) functionalized with surfactant are studied. The results are specifically compared with the corresponding properties of epoxy-based nanocomposites. The CNTs bring about significant improvements in flexural strength, flexural modulus, storage modulus and glass transition temperature, Tg, of CNT/polybenzoxazine nanocomposites at the expense of impact fracture toughness. The surfactant treatment has a beneficial effect on the improvement of these properties, except the impact toughness, through enhanced CNT dispersion and interfacial interaction. The former four properties are in general higher for the CNT/polybenzoxazine nanocomposites than the epoxy counterparts, and vice versa for the impact toughness. The addition of CNTs has an ameliorating effect of lowering the coefficient of thermal expansion (CTE) of polybenzoxazine nanocomposites in both the regions below and above Tg, whereas the reverse is true for the epoxy nanocomposites. This observation has a particular implication of exploiting the CNT/polybenzoxazine nanocomposites in applications requiring low shrinkage and accurate dimensional control.  相似文献   

6.
Carbon materials, such as graphite oxides, carbon nanotubes and graphenes, have exceptional thermal conductivity, which render them excellent candidates as fillers in advanced thermal interface materials for high density electronics. In this paper, these carbon materials were functionalized with 4,4′-diaminodiphenyl sulphone (DDS), to enhance the bonding between the carbon materials and the resin matrix. Their visibly different properties were investigated. It seems that DDS-functionalization can obviously improve the interfacial heat transfer between the carbon materials and the epoxy matrix. The thermal conductivity enhancement of D-Graphene composites (0.493 W/m K) was about 30% higher than that of D-MWNTs composites (0.387 W/m K) at 0.5 vol.% loading. The different effects among EGO, D-EGO, MWNTs, D-MWNTs and D-Graphene in polymer composites were also discussed. It was demonstrated that DDS-functionalized carbon materials had an obvious effect on the thermal performances of composite materials and were more effective in thermal conductivity enhancement.  相似文献   

7.
We have increased the tensile strength without compromising the elongation of aluminum (Al)–carbon nanotube (CNT) composite by a combination of spark plasma sintering followed by hot-extrusion processes. From the microstructural viewpoint, the average thickness of the boundary layer with relatively low CNT incorporation has been observed by optical, field-emission scanning electron, and high-resolution transmission electron microscopies. Significantly, the Al–CNT composite showed no decrease in elongation despite highly enhanced tensile strength compared to that of pure Al. We believe that the presence of CNTs in the boundary layer affects the mechanical properties, which leads to well-aligned CNTs in the extrusion direction as well as effective stress transfer between the Al matrix and the CNTs due to the generation of aluminum carbide.  相似文献   

8.
The interest in carbon nanotubes (CNTs) as reinforcements for aluminium (Al) has been growing considerably. Efforts have been largely focused on investigating their contribution to the enhancement of the mechanical performance of the composites. The uniform dispersion of CNTs in the Al matrix has been identified as being critical to the pursuit of enhanced properties. Ball milling as a mechanical dispersion technique has proved its potential. In this work, we use ball milling to disperse up to 5 wt.% CNT in an Al matrix. The effect of CNT content on the mechanical properties of the composites was investigated. Cold compaction and hot extrusion were used to consolidate the ball-milled Al–CNT mixtures. Enhancements of up to 50% in tensile strength and 23% in stiffness compared to pure aluminium were observed. Some carbide formation was observed in the composite containing 5 wt.% CNT. In spite of the observed overall reinforcing effect, the large aspect ratio CNTs used in the present study were difficult to disperse at CNT wt.% greater than 2, and thus the expected improvements in mechanical properties with increase in CNT weight content were not fully realized.  相似文献   

9.
A new family of high thermal conductivity composites, produced through infiltration of a metallic alloy into preforms of mixtures of graphite flakes and either ceramic or carbon materials (in the form of particles or short fibers), has been recently developed. Composites microstructure roughly consists of alternating layers of flakes and metal-particles composite. The present work focuses on graphite flakes–SiC particles/Al–12 wt%Si composites. The effects that the relative amounts of the components, as well as the average diameter of SiC particles (varied over the range 13–170 μm), have on the thermal conductivity are investigated. The experimental results are analyzed by means of two model microstructures: (i) alternating layers of flakes and metal-particle composite, and, (ii) oriented discs (graphite flakes) randomly distributed in a metal-particle composite matrix. Fitting experimental data by means of these model microstructures leads to reasonable values of the thermal conductivity of graphite flakes along the transversal and longitudinal directions.  相似文献   

10.
The goal of this work is the evaluation of nanoscaled reinforcements; in particular nanodiamonds (NDs) and carbon nanotubes (CNTs) on properties of titanium matrix composites (TiMMCs). By using nano sized materials as reinforcement in TiMMCs, superior mechanical and physical properties can be expected. Additionally, titanium powder metallurgy (P/M) offers the possibility of changing the reinforcement content in the matrix within a very wide range. In this work, TiMMCs have been produced from titanium powder (Grade 4). The manufacturing of the composites was done by hot pressing, followed by the characterisation of the TiMMCs. The Archimedes density, hardness and oxygen content of the specimens in addition to the mechanical properties were compared and reported in this work. Moreover, XRD analysis and SEM observations revealed in situ formed titanium carbide (TiC) phase after hot pressing in TiMMCs reinforced with NDs and CNTs, at 900 °C and 1100 °C respectively. The strengthening effect of NDs was more significant since its distribution was more homogeneous in the matrix.  相似文献   

11.
Drawing, winding, and pressing techniques were used to produce horizontally aligned carbon nanotube (CNT) sheets from free-standing vertically aligned CNT arrays. The aligned CNT sheets were used to develop aligned CNT/epoxy composites through hot-melt prepreg processing with a vacuum-assisted system. Effects of CNT diameter change on the mechanical properties of aligned CNT sheets and their composites were examined. The reduction of the CNT diameter considerably increased the mechanical properties of the aligned CNT sheets and their composites. The decrease of the CNT diameter along with pressing CNT sheets drastically enhanced the mechanical properties of the CNT sheets and CNT/epoxy composites. Raman spectra measurements showed improvement of the CNT alignment in the pressed CNT/epoxy composites. Research results suggest that aligned CNT/epoxy composites with high strength and stiffness are producible using aligned CNT sheets with smaller-diameter CNTs.  相似文献   

12.
Polymeric composites with relatively high thermal conductivity, high dielectric permittivity, and a low dissipation factor are obtained in the present study. Three types of core-shell-structured aluminum (Al) particles are incorporated in poly(vinylidene fluoride) (PVDF) by melt-mixing and hot-pressing processes. The morphological, thermal, and dielectric properties of the composites are characterized using thermal analysis, a scanning electron microscope, and a dielectric analyzer. The results indicate that the Al particles decrease the degree of crystallinity of PVDF, and that the particle size and shape of the filler affect the thermal conductivity and dielectric properties of Al/PVDF. No variation in the dissipation factor is observed up to 60 wt.% Al. Thermal conductivity and dielectric permittivity values as high as 1.65 W/m K and 230, respectively, as well as a low dissipation factor of 0.25 at 0.1 Hz, are realized for the composites with 80 wt.% spherical Al.  相似文献   

13.
Enhancing the thermal conductivity and reducing the thermal expansion for electronic packaging applications can be achieved by compositing carbon nanofibers in copper-matrices. Though achieving these optimal thermal properties is theoretically possible, such composites are currently not available due to many unresolved practical problems. Conventional compositing processes are incapable of obtaining the desired fiber distribution while controlling the fiber–matrix interfaces for effective heat and load transfers. In this paper, three different powder metallurgy based processes are presented; two based on conventional techniques and the third a relatively new method. The first method is basically the conventional powder metallurgy process. The second and the third methods are also powder metallurgy processes with different ways of modifying the surface of the fibers using either electroless coating or the novel salt decomposition method. It is shown that the salt decomposition method is capable of achieving the desired high thermal conductivity values while the thermal expansion values remain the same in all the three processes.  相似文献   

14.
IS304 high temperature self-lubricating composites were prepared by ball milling and induction sintering with embedded BaF2/CaF2 and Ag particles as lubricants. In comparison to PM304 composites with the same composition, the friction coefficient of IS304 is slight lower than that of PM304 in the temperature range from 20 to 250 °C. However, the friction coefficient of IS304 dramatically decreases at 260–280 °C while the friction coefficient of PM304 dramatically decreases at 330–350 °C under the same test condition. The improved friction coefficient of IS304 composites in the temperature range from 260 to 340 °C is due to the formation of self-lubricating fluoride films. The existence of fluoride film on the worn surface of IS304 is attributed to the refinement of lubricants from 30–70 μm to less than 2 μm and the appropriate distribution of fluorides, which can lead to a higher temperature rise (flash temperature) at the instantaneous contacting surface in comparison to that of the PM304 under the same test condition. It is this considerably higher superficial temperature rise at the contacting surface that can effectively activate the self-lubrication property of the fluoride phase and subsequently induce the formation the lubricating film.  相似文献   

15.
Effect of strain rate change and reinforcement ball milling on the compressive response of Mg composites is investigated in this work. Quasi-static response was determined using a servo hydraulic MTS machine while dynamic response was assessed by Split Hopkinson Pressure Bar. The presence of either as-received or ball milled Al particles significantly assisted in improving compressive response of Mg in both regimes, compared to monolithic Mg. In the quasi-static regime, the Mg/1.626Al composite containing ball milled Al particles exhibits significantly higher compressive yield strength, ultimate compressive strength and work of fracture of (+76, +87% and +58%) compared to monolithic Mg. However, with a fixed amount of Al, composites containing ball milled particles show a higher strength compared to composites containing as-received particles. Results also revealed that the tremendous increase in strain rate led to an increase in flow stress of all synthesized material while the failure strain was marginally compromised.  相似文献   

16.
Silica coated multiwalled carbon nanotubes (SiO2@MWCNTs) with different coating thicknesses of ∼4 nm, 30–50 nm, and 70–90 nm were synthesized by a sol–gel method and compounded with polyurethane (PU). The effects of SiO2@MWCNTs on the electrical properties and thermal conductivity of the resulting PU/SiO2@MWCNT composites were investigated. The SiO2 coating maintained the high electrical resistivity of pure PU. Meanwhile, incorporating 0.5, 0.75 and 1.0 wt% SiO2@MWCNT (70–90 nm) into PU, produced thermal conductivity values of 0.287, 0.289 and 0.310 W/mK, respectively, representing increases of 62.1%, 63.3% and 75.1%. The thermal conductivity of PU/SiO2@MWCNT composites was also increased by increasing the thickness of the SiO2 coating.  相似文献   

17.
This paper presents a preliminary investigation on the effects of incorporating carbon nanotubes (CNT) into polyamide-6 (PA6) on mechanical, thermal properties and fire performance of woven glass reinforced CNT/PA6 nanocomposite laminates. The samples were characterized by tensile and flexural tests, thermal gravimetric analysis (TGA), heat distortion temperature (HDT) measurements, thermal conductivity and cone calorimeter tests. Incorporation of up to 2 wt% CNT in CNT/PA6/GF laminates improved the flexural stress of the laminates up to 36%, the thermal conductivity by approximately 42% and the ignition time and peak HRR time was delayed by approximately 31% and 118%, respectively.  相似文献   

18.
Carbon nanotubes (CNTs) were incorporated into polystyrene (PS) and poly(methyl methacrylate) (PMMA) matrices via in situ emulsion and emulsion/suspension polymerization methods. The polymerizations were carried out using various initiators, surfactants, and carbon nanotubes to determine their influence on polymerization and on the properties of the composites. The loading of CNTs in the composites varied from 0 to 15 wt.%, depending on the CNTs used. Morphology and dispersion of the CNTs were analyzed by transmission and scanning electron microscopy techniques. The dispersion of multi-walled carbon nanotubes (MWCNT) in the composites was excellent, even at high CNT loading. The mechanical properties, and electrical and thermal conductivities, of the composites were also analyzed. Both electrical and thermal conductivities were improved.  相似文献   

19.
Untreated and acid-treated multi-walled carbon nanotubes (MWNT) were used to fabricate MWNT/epoxy composite samples by sonication technique. The effect of MWNT addition and their surface modification on the mechanical properties were investigated. Modified Halpin–Tasi equation was used to evaluate the Young’s modulus and tensile strength of the MWNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. There was a good correlation between the experimentally obtained Young’s modulus and tensile strength values and the modified Halpin–Tsai theory. The fracture surfaces of MWNT/epoxy composite samples were analyzed by scanning electron microscope.  相似文献   

20.
The excellent mechanical properties of carbon nanotubes (CNTs) make them the ideal reinforcements for high performance composites. The misalignment and waviness of CNTs within composites are two major issues that limit the reinforcing efficiency. We report an effective method to increase the strength and stiffness of high volume fraction, aligned CNT composites by reducing CNT waviness using a drawing and stretching approach. Stretching the composites after fabrication improved the ultimate strength by 50%, 150%, and 190% corresponding to stretch ratios of 2%, 4% and 7%, respectively. Improvement of the electrical conductivities exhibited a similar trend. These results demonstrate the importance of straightening and aligning CNTs in improving the composite strength and electrical conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号