首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
余为  薛海龙  钱蒙  梁希 《复合材料学报》2015,32(6):1688-1695
制备了不同纤维质量分数的玻璃纤维-空心玻璃微珠/环氧树脂复合泡沫材料。通过三点弯曲试验研究了纤维质量分数对复合泡沫材料力学性能的影响。将复合泡沫材料试件置于蒸馏水和海水中浸泡,研究了浸泡腐蚀对试件弯曲性能的影响,并结合扫描电镜照片分析其原因。研究表明:纤维质量分数越高,玻璃纤维-空心玻璃微珠/环氧树脂复合泡沫材料的吸湿率越大,且在蒸馏水中的吸湿率较海水中的更大。试件的弯曲强度随纤维质量分数增加而增大,当纤维质量分数为10%时达到最大,比未添加纤维的试件增强了51%,之后则随纤维质量分数增加逐渐降低。浸泡腐蚀降低了试件的弯曲性能,其中海水浸泡后的试件弯曲性能最低。玻璃纤维-空心玻璃微珠/环氧树脂复合泡沫材料弯曲强度降低的直接原因是浸泡腐蚀使得部分玻璃微珠和玻璃纤维与环氧树脂基体间的界面层受到破坏。  相似文献   

2.
A study of the durability of fiber reinforced polymer (FRP) materials in seawater and warm environment is presented in this paper. The major objective of the study is to evaluate the effects of seawater and temperature on the structural properties of glass/epoxy and glass/polyurethane composite materials. These effects were studied in terms of seawater absorption, permeation of salt and contaminants, chemical and physical bonds at the interface, degradation in mechanical properties, and failure mechanisms. Test parameters included immersion time, ranging from 3 months to 1 year, and temperature including room temperature and 65°C. Seawater absorption increased with immersion time and with temperature. The matrix in both composites was efficient in protecting the fibers from corrosive elements in seawater; however moisture creates a dual mechanism of stress relaxation—swelling—mechanical adhesion, and breakdown of chemical bonds between fiber and matrix at the interface. It is observed that high temperature accelerates the degradation mechanism in the glass/polyurethane composite. No significant changes were observed in tensile strength of glass/epoxy and in the modulus of both glass/epoxy and glass/polyurethane composites. However, the tensile strength of the glass/polyurethane composite decreased by 19% after 1 year of exposure to seawater at room temperature and by 31% after 1 year of exposure at 65°C. Plasticization due to moisture absorption leads to ductile failure in the matrix, but this can be reversed in glass/polyurethane composites after extended exposure to seawater at high temperature where brittle failure of matrix and fiber were observed.  相似文献   

3.
This paper presents the development of glass fibres coated with nanocomposites consisting of carbon nanotubes (CNTs) and epoxy. Single glass fibres with different CNT content coating are embedded in a polymer matrix as a strain sensor for composite structures. Raman spectroscopy and electrical response of glass fibres under mechanical load are coupled for in situ sensing of deformation in composites. The results show that the fibres with nanocomposite coating exhibit efficient stress transfer across the fibre/matrix interface, and these with a higher CNT content are more prone to fibre fragmentation at the same matrix strain. A relationship between the fibre stress and the change in electrical resistance against the fibre strain is established. The major finding of this study has a practical implication in that the fibres with nanocomposite coating can serve as a sensor to monitor the deformation and damage process in composites.  相似文献   

4.
This paper aims to evaluate the influence of water ageing on nanoindentation response of the in situ components of hemp/epoxy composites. Specific samples have been tested, made of single hemp yarn composites with two different epoxy resins. Analysis of indentation points depending on their location in the yarn microstructure has been performed. Measurements showed the influence of neighbouring fibres on the reduced modulus in the confined resin. Water induces a decrease in nanoindentation properties, and maximum decrease in reduced modulus takes place in the interfacial zone, which shows the significant degradation of the fibre/matrix interface caused by water ageing. Evolutions in the indentation properties induced by water are similar for both partially bio-based and fully synthetic epoxy resin composites. All these results bring insights into the influence of water ageing of each constituent of hemp fibre reinforced composites and give interesting data for developing eco-composite materials.  相似文献   

5.
The influence of laminate thickness of polymer matrix composites on moisture diffusion in seawater immersion, as well as the resulting mechanical property degradation for composites of glass/isopolyester (G/IPE), carbon/isopolyester (C/IPE), glass/vinylester (G/VE) and carbon/vinylester (C/VE), was investigated in this paper. Laminates 3 and 10 mm in thickness, fabricated using the wet hand lay-up technique, were characterized for moisture absorption in artificial seawater medium, and their flexural strength and interlaminar shear strength (ILSS) degradations were studied. Moisture diffusion was observed to be anamolous to the Fick’s law for both 3 and 10 mm thick samples in the later stage of diffusion. Moisture permeability of 10 mm thick samples was two to three order greater than that of 3 mm thick ones, while the time to moisture saturation remained unchanged. With the increase of laminate thickness, moisture saturation increased by 1.4% for C/VE and 7% for G/IPE. The residual flexural strength and ILSS were greater in case of 10 mm thick specimens after 200 days of exposure. SEM examination of the fractured specimens showed greater levels of fibre/matrix debonding in 10 mm thick specimens.  相似文献   

6.
In recent years, carbon fiber reinforced polymer (CFRP) composites have found increasing applications in marine and offshore area, where the CFRP components are subjected to a persistent attack of moisture. The performance degradation of composites under those critical service conditions becomes a key issue. In this work, silane coating and multiwalled carbon nanotubes were applied on carbon fibers to enhance the fiber/matrix interfacial bonding strength. The long-term effects of moisture on the interfacial shear strength (IFSS) of the composites in underwater environments, such as de-ionized water and simulated seawater, have been studied using single fiber microbond method. The silane coating and carbon nanotube-modified silane coating are found to contribute 14.5% and 26.3% increase in IFSS of the CFRP in dry air, and well maintain this improvement during a 120-day immersion test in de-ionized water and simulated seawater.  相似文献   

7.
Water absorption of natural fibre plastic composites is a serious concern especially for their potential outdoor applications. In this research, jute fibre reinforced with unsaturated polyester composites are subjected to water immersion tests in order to study the effects of water absorption in its mechanical properties. Water absorption tests were conducted by immersing composite specimens into three different environmental conditions included distilled water, sea water and acidic solutions at room temperature for a period up to 3 weeks. Water absorption curves obtained and characteristic parameter D (diffusion coefficient) and Mm (maximum moisture content) were determined. The water absorption of jute fibre reinforced unsaturated polyester composites were found to follow a so-called pseudo-Fickian behaviour. The effects of the immersion treatment on the flexural and compression characteristics were investigated. The flexural and compression properties were found to decrease with the increase in percentage water uptake. These flexural and compression behaviours were explained by the plasticization of the matrix–fibre interface and swelling of the jute fibres.  相似文献   

8.
This paper presents the durability behavior of pultruded unidirectional carbon fiber reinforced polymer (CFRP) plates immersed in water and seawater at room temperature, under sustained bending strain of 30% and 50% ultimate strain. In this study, water absorption kinetics of CFRP composite and effects of moisture ingress on the mechanical properties, such as tensile properties and short beam shear strength, constitute integral parts of the investigation. The study reveals that seawater immersion leads to higher equilibrium moisture content than water immersion, due to the blister induced damages on the CFRP plate surfaces in seawater. However, diffusion coefficient in seawater immersion is shown to be lower compared to the water immersion, and is attributed to the high concentration of dissolved salts in seawater that retard water diffusion by osmosis. Increasing the bending strain reduces the free volume fraction of the resin matrix, which is responsible for the decreased water uptake and diffusion coefficient for both immersions. Immersion in both media leads to the pronounced degradation in the resin controlled property (i.e., short beam shear strength) of CFRP, but shows less or negligible effects on the fiber controlled properties (i.e., tensile strength and modulus). Both immersion media and 50% bending strain level show remarkable effects on the variation of the mechanical properties of CFRP.  相似文献   

9.
The optimum condition of glass fiber/epoxy composites was investigated according to mixing ratio of two epoxy matrices. Novolac type epoxy and isocyanate modified epoxy were used as composites matrix. Based on chemical composition of mixing matrix, optimum mixing ratio of epoxy resins was obtained through FT-IR instrument. In order to investigate thermal stability and interface of epoxy resin, glass transition temperature was observed by DSC instrument, and static contact angle was measured by reflecting microscope. Change of IR peak and Tg was conformed according to different epoxy mixing ratios. After fabrication of glass fiber/epoxy composites, tensile, compression, and flexural properties were tested by UTM by room and high temperature. The composites exhibited best mechanical properties when epoxy mixing ratio was 1:1.  相似文献   

10.
In this work, failure mechanisms of metallised glass fibre reinforced epoxy composites under tensile loading were investigated using acoustic emission analysis. Sandblasting with Al2O3 was used to pre-treat the composite surface prior to metallisation, and therefore to improve adhesion. The sandblasting time was varied from 2 s to 6 s. A two-step metallisation process consisting of electroless and subsequent electroplating was used for depositing the copper coating on the pre-treated composite surface. The mechanical pre-treatment had no significant negative effect on the mechanical properties of the composite laminate. The acoustic emission (AE) from the metallised composite was recorded during tensile testing in order to investigate the failure mechanisms. AE-Signals were analysed using pattern recognition and frequency analysis techniques. A correlation between the cumulative absolute AE-energy and the mechanical behaviour of uncoated and coated specimens during tensile testing was successfully observed. It was shown that a stronger adhesion between substrate and coating leads to a lower release of mechanical elastic energy, which could be recorded by means of AE analysis. Furthermore, differences in peak frequency, frequency distribution and the use of pattern recognition techniques allowed classifying the signal into three failure mechanisms for the uncoated samples and four failure mechanisms for the coated samples, namely matrix cracking, fibre-matrix interface failure, fibre breakage and substrate-coating interface failure. Waveform and frequency analysis of the classified signals supported the identification of the failure mechanisms. Furthermore, optical investigation and SEM images of the tested samples and fracture surfaces confirmed the identified mechanisms evaluated by acoustic emission analysis.  相似文献   

11.
Abstract: This article presents results of experimental investigations of the durability of glass‐fibre‐reinforced polymer (GFRP) pultruded profiles exposed to typical environments of civil engineering applications. Specimens obtained from commercial GFRP profiles made of unsaturated polyester and vinylester resins were subjected to immersion in (i) demineralised water and (ii) salt water at 20 °C, 40 °C and 60 °C for up to 18 months, (iii) continuous condensation at 40 °C for up to 9 months and (iv) accelerated ageing in a QUV chamber for up to 3000 h. The effects of such exposure conditions on both types of profiles were analysed in what concerns their (i) mass changes, (ii) viscoelastic response, evaluated by means of dynamic mechanical analysis (DMA), (iii) mechanical response in tension, bending and interlaminar shear, and (iv) chemical changes, assessed through Fourier transformed infrared spectroscopy (FTIR). Hygrothermal ageing had significant influence on the material performance, namely on the mechanical response – demineralised water immersion caused a higher level of degradation, compared with salt water immersion, and results show a clear competition between moisture‐induced plasticisation and residual post‐curing of the composite matrix. Following QUV exposure, although considerable aesthetical changes were observed, the viscoelastic response and mechanical performance of both profiles were not remarkably affected, confirming that UV radiation affects essentially the outermost layers of GFRP profiles. In general, the GFRP profile made of vinylester resin exhibited better durability performance, when compared with its polyester counterpart.  相似文献   

12.
Hemp fibre reinforced unsaturated polyester composites (HFRUPE) were subjected to water immersion tests in order to study the effects of water absorption on the mechanical properties. HFRUPE composites specimens containing 0, 0.10, 0.15, 0.21 and 0.26 fibre volume fraction were prepared. Water absorption tests were conducted by immersing specimens in a de-ionised water bath at 25 °C and 100 °C for different time durations. The tensile and flexural properties of water immersed specimens subjected to both aging conditions were evaluated and compared alongside dry composite specimens. The percentage of moisture uptake increased as the fibre volume fraction increased due to the high cellulose content. The tensile and flexural properties of HFRUPE specimens were found to decrease with increase in percentage moisture uptake. Moisture induced degradation of composite samples was significant at elevated temperature. The water absorption pattern of these composites at room temperature was found to follow Fickian behaviour, whereas at elevated temperatures it exhibited non-Fickian.  相似文献   

13.
Poly(styrene-co-acrylonitrile) (SAN) was used to modify diglycidyl ether of bisphenol-A (DGEBA) type epoxy resin cured with diamino diphenyl sulfone (DDS) and the modified epoxy resin was used as the matrix for fibre reinforced composites (FRPs) in order to get improved mechanical and thermal properties. E-glass fibre was used as the fibre reinforcement. The morphology, dynamic mechanical and thermal characteristics of the systems were analyzed. Morphological analysis revealed heterogeneous dispersed morphology. There was good adhesion between the matrix polymer and the glass fibre. The dynamic moduli, mechanical loss and damping behaviour as a function of temperature of the systems were studied using dynamic mechanical analysis (DMA). DMA studies showed that DDS cured epoxy resin/SAN/glass fibre composite systems have two Tgs corresponding to epoxy rich and SAN rich phases. The effect of thermoplastic modification and fibre loading on the dynamic mechanical properties of the composites were also analyzed. Thermogravimetric analysis (TGA) revealed the superior thermal stability of composite system.  相似文献   

14.
This paper reports the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid laminated composites used in the reinforcement and/or the repair of aeronautic structures. These composites were manufactured by the hand lay-up process. Their physical, thermal and mechanical behaviors are discussed in terms of moisture absorption, thermal stability, tensile strength, elastic modulus, flexural strength, flexural modulus and abrasive wear resistance. The impact of hygrothermal aging on the mechanical properties of each composite group has been also investigated.The main results indicated that after water immersion, all composites showed significant moisture absorption especially for glass/epoxy composite. Thermogravimetric analysis showed that the hybrid composite presented the best thermal stability behavior while the glass/epoxy composite the bad behavior. The mechanical properties of the carbon/epoxy composites, in the bulk material, were considerably higher than those of the glass/epoxy; the hybrid structure presented intermediate mechanical properties. The same trend was also observed in terms of wear properties. Finally, a deleterious effect on the strength of all composites due to hygrothermal exposure was established. However, carbon/epoxy composites seem to be less susceptible to aging damage after 90 days at 90 °C.  相似文献   

15.
Inspired by biological systems in which damage triggers an autonomic healing response, a polymer composite material that can heal itself when cracked has been developed. In this work, compression and tensile properties of a self-healed fibre reinforced epoxy composites were investigated. Microencapsulated epoxy and mercaptan healing agents were incorporated into a glass fibre reinforced epoxy matrix to produce a polymer composite capable of self-healing. The self-repair microcapsules in the epoxy resin would break as a result of microcrack expansion in the matrix, and letting out the strong repair agent to recover the mechanical strength with a relative healing efficiency of up to 140% which is a ratio of healed property value to initial property value or healing efficiency up to 119% if using the healed strength with the damaged strength.  相似文献   

16.
Nanoparticle reinforcement of the matrix in laminates has been recently explored to improve mechanical properties, particularly the interlaminar strength. This study analyses the fatigue behaviour of nanoclay and multiwalled carbon nanotubes enhanced glass/epoxy laminates. The matrix used was the epoxy resin Biresin® CR120, combined with the hardener CH120-3. Multiwalled carbon nanotubes (MWCNTs) 98% and organo-montmorillonite Nanomer I30 E nanoclay were used. Composites plates were manufactured by moulding in vacuum. Fatigue tests were performed under constant amplitude, both under tension–tension and three points bending loadings. The fatigue results show that composites with small amounts of nanoparticles addition into the matrix have bending fatigue strength similar to the obtained for the neat glass fibre reinforced epoxy matrix composite. On the contrary, for higher percentages of nanoclays or carbon nanotubes addition the fatigue strength tend to decrease caused by poor nanoparticles dispersion and formation of agglomerates. Tensile fatigue strength is only marginally affected by the addition of small amount of particles. The fatigue ratio in tension–tension loading increases with the addition of nanoclays and multi-walled carbon nanotubes, suggesting that both nanoparticles can act as barriers to fatigue crack propagation.  相似文献   

17.
Interlaminar shear properties of fibre reinforced polymer composites are important in many structural applications. Matrix modification is an effective way to improve the composite interlaminar shear properties. In this paper, diglycidyl ether of bisphenol-F/diethyl toluene diamine system is used as the starting epoxy matrix. Multi-walled carbon nanotubes (MWCNTs) and reactive aliphatic diluent named n-butyl glycidyl ether (BGE) are employed to modify the epoxy matrix. Unmodified and modified epoxy resins are used for fabricating glass fibre reinforced composites by a hot-press process. The interlaminar shear strength (ILSS) of the glass fibre reinforced composites is investigated and the results indicate that introduction of MWCNT and BGE obviously enhances the ILSS. In particular, the simultaneous addition of 0.5 wt.% MWCNTs and 10 phr BGE leads to the 25.4% increase in the ILSS for the glass fibre reinforced composite. The fracture surfaces of the fibre reinforced composites are examined by scanning electron microscopy and the micrographs are employed to explain the ILSS results.  相似文献   

18.
The hydrothermal ageing of glass/epoxy interface is investigated using an experimental–numerical approach on cylindrical epoxy specimens with centrally located optical fibers. A 24 mm long Bragg grating sensor is inscribed on the optical fiber and used to monitor strains along the fiber, due to processing and subsequent ageing in water at 50 °C. The distributed strains are used to: (a) evaluate the residual strain field developed during processing, employing a parametric finite element identification scheme, (b) monitor the evolution of the moisture induced strains during ageing using linear and non-linear responses for the epoxy recorded experimentally, (c) track debond growth at the interface, generated during ageing, by adopting a concentration dependent cohesive finite element model. Good agreement is found between experimental data and simulations until 47 days of immersion (or 63% of saturation). Afterwards, the model is not quantitatively accurate but indicates well the trend of the experimental data.  相似文献   

19.
The role of interfacial adhesion between fibre and matrix on the residual strength behaviour of carbon-fibre-reinforced metal laminates (FRMLs) has been investigated. Differences in fibre/matrix adhesion were achieved by using treated and untreated carbon fibres in an epoxy resin system. Mechanical characterisation tests were conducted on bulk composite specimens to determine various properties such as interlaminar shear strength (ILSS) and transverse tension strength which clearly illustrate the difference in fibre/matrix interfacial adhesion. Scanning electron microscopy confirmed the difference in fracture surfaces, the untreated fibre composites showing interfacial failure while the treated fibre composites showed matrix failure. No clear differences were found for the mechanical properties such as tensile strength and Young's modulus of the FRMLs despite the differences in the bulk composite properties. A reduction of 7·5% in the apparent value of the ILSS was identified for the untreated fibre laminates by both three-point and five-point bend tests. Residual strength and blunt notch tests showed remarkable increases in strength for the untreated fibre specimens over the treated ones. Increases of up to 20% and 14% were found for specimens with a circular hole and saw cut, respectively. The increase in strength is attributed to the promotion of fibre/matrix splitting and large delamination zones in the untreated fibre specimens owing to the weak fibre/matrix interface.  相似文献   

20.
The aim of the present work is to investigate the influence of the reinforcing material and architecture on the voids content, mechanical properties and tribological behavior of fiber reinforced epoxy composite laminates manufactured by VARTM under different processing conditions. Two different textile architectures, namely unidirectional non-crimp fabrics (UD) and 0/90 plain wave (PW), were considered, reinforcing an EPIKOTE RIMR 135 epoxy matrix with glass (GF) as well as carbon (CF) continuous fibers. Optical observations revealed an unexpected trend relatively to the intra- and inter-bundle voids concentration with respect to the impregnation velocity, especially using UD-CF and UD-GF reinforcements and low impregnation rate. Tensile and three points bending tests highlighted the dominant role of fiber material and architecture on mechanical properties, whereas the presence of voids played a minor role with respect to the analyzed features. Tribological outcomes evidenced a reduction of the friction coefficient (μ) when the resin is reinforced by carbon or glass fibers. The lowest values were detected when the sliding direction of the counterbody is oriented parallel to the fiber direction for UD samples. Further reduction of μ, for both UD and PW specimens, was obtained by interposing a lubricant at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号