首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resistance to time-dependent plastic deformation of polymer composite materials is a crucial requirement in their application for long-term durability and reliability. Herein, creep and recovery behaviors of polystyrene (PS) composites filled with various loadings of chemically reduced graphene oxide (CRGO) were investigated at different environment temperatures. As expected, incorporation of CRGO into PS polymer increases the thermal stability, glass transition temperature and elastic modulus, although the tensile strength of the composite has a slight decrease. It was found that the creep deformation and strain rate of PS polymer reduce with decreasing temperature and with increasing loading of CRGO. A significant improvement in the recovered strain of PS was also obtained after the presence of CRGO. Based on the analytical modelings (Burger’s model and Weibull distribution function) and experimental results, the role of CRGO on improving the creep and recovery performance of thermoplastics was proposed and discussed.  相似文献   

2.
A finite difference technique is developed to predict the second stage creep displacement rates and stress analysis of a short fiber metal matrix composite subjecting to a constant axial load through a micromechanical approach. The technique is capable to take into account the presence of interfacial debonding as one of the main factors affecting the creep performance of short fiber composites. The exponential law is adopted to describe the matrix creep behavior. Also, a model for prediction of interfacial debonding at fiber/matrix interface is developed using a stress based method. The obtained results could greatly help to better understand the flow pattern of matrix material and the load transfer mechanism between fiber and matrix with and without the presence of interfacial debond. The predicted strain rate by the proposed approach exhibits good agreement with the experimental results.  相似文献   

3.
The creep behaviour of a creep-resistant AE42 magnesium alloy reinforced with Saffil short fibres and SiC particulates in various combinations has been investigated in the transverse direction, i.e., the plane containing random fibre orientation was perpendicular to the loading direction, in the temperature range of 175–300 °C at the stress levels ranging from 60 to 140 MPa using impression creep test technique. Normal creep behaviour, i.e., strain rate decreasing with strain and then reaching a steady state, is observed at 175 °C at all the stresses employed, and up to 80 MPa stress at 240 °C. A reverse creep behaviour, i.e., strain rate increasing with strain, then reaching a steady state and then decreasing, is observed above 80 MPa stress at 240 °C and at all the stress levels at 300 °C. This pattern remains the same for all the composites employed. The reverse creep behaviour is found to be associated with fibre breakage. The apparent stress exponent is found to be very high for all the composites. However, after taking the threshold stress into account, the true stress exponent is found to range between 4 and 7, which suggests viscous glide and dislocation climb being the dominant creep mechanisms. The apparent activation energy Qc was not calculated due to insufficient data at any stress level either for normal or reverse creep behaviour. The creep resistance of the hybrid composites is found to be comparable to that of the composite reinforced with 20% Saffil short fibres alone at all the temperatures and stress levels investigated. The creep rate of the composites in the transverse direction is found to be higher than the creep rate in the longitudinal direction reported in a previous paper.  相似文献   

4.
The short-time creep behavior at tensile and single cantilever mode of deformation for a series of biodegradable composites was thoroughly studied. The composites were based on a biodegradable polymer matrix consisted a blend of poly(butylene adipate-terephthalate) (PBAT) copolyester, produced by non-renewable resources, and Polylactic acid (PLA). The matrix was reinforced with three different wood fiber types, at 20 and 30 wt%. The experimental data were analyzed in terms of Findley's and Burger's viscoelastic models. The effect of stress and temperature and wood fiber type on the material's creep response was analytically studied, while the Burger's model parameters were related to the composites morphology. In all cases, the wood fibers improved the creep resistance of the composites.  相似文献   

5.
Laser technology is a good alternative for continuous joining of thermoplastics composites structures. Presence of continuous fibers at a high fiber volume fraction (superior to 30%) does not allow using traditional development as for pure thermoplastic materials, due to the presence of fiber clusters or polymer rich areas. Those heterogeneities induce macroscopic light scattering through the structure, reducing the resulting energy level absorbed at the welding interface. The study proposed here takes into account the real microstructure of the composite in order to evaluate changes in local energy diffusion directly linked with local fiber arrangements. The objective of this work is to develop an affordable numerical simulation of the laser welding process modeled with adapted physics mechanism and taking into account the microstructure heterogeneity of the considered materials regarding optical and thermal properties. To model the optical path of the laser beam through the composite fibrous structure, a simulation tool based on geometrical optic is developed. Weldability is considered on composites with different thicknesses, showing the non linear relationship between welding energy and substrate thickness.  相似文献   

6.
A model incorporating a modified thermal activation theory is presented to model and predict creep of polymer composites. Results are presented of the successful application of this model to predict creep of a unidirectional, continuous-carbon-fiber-reinforced polymer composite (AS4/3501-6) and its epoxy matrix, over a wide range of stress (10–80% of ultimate tensile strength) and temperature (295–433 K). From an analysis of model parameters, it is concluded that the reinforcing carbon fibers do not alter the creep mechanism but do alter the creep behavior of the epoxy matrix, resulting in reductions in creep rate and in the magnitude of creep.  相似文献   

7.
Due to their high flexibility, high tensile strain and high fracture toughness, polymer optical fibers (POF) are excellent candidates to be utilized as embedded sensors for structure health monitoring of fiber reinforced composites. In 3D orthogonal woven structures yarns are laid straight and polymer optical fiber can be easily inserted during preform formation either as a replacement of constituents or between them. The results of the previous paper indicated how an optic fiber sensor can be integrated into 3D orthogonal woven preforms with no signal loss. This paper addresses whether incorporating POF into 3D orthogonal woven composites affects their structure integrity and performance characteristics. Range of 3D orthogonal woven composites with different number of layers and different weft densities was fabricated. The samples were manufactured with and without POF to determine the effect of embedding POF on composite structure integrity. Bending, tensile strength tests, and cross section analysis were conducted on the composite samples. Results revealed that integrity of 3D orthogonal woven composite was not affected by the presence of POF. Due to its high strain, embedded POF was able to withstand the stresses without failure as a result of conducting destructive tests of the composite samples. Micrograph of cross-section of composite samples showed that minimum distortion of the yarn cross-section in vicinity of POF and no presence of air pocked around the embedded POF which indicates that 3D woven preform provided a good host for embedded POF.  相似文献   

8.
Due to the variables and unknowns in both material properties and predictive models in creep crack growth (CCG) rates, it is difficult to predict failure of a component precisely. A failure strain constraint based transient and steady state CCG model (called NSW) modified using probabilistic techniques, has been employed to predict CCG using uniaxial data as basic material property. In this paper the influence of scatter in the creep uniaxial properties, the parameter C* and creep crack initiation and growth rate have been examined using probabilistic methods. Using uniaxial and CCG properties of C‐Mn steel at 360 °C, a method is developed which takes into account the scatter of the data and its sensitivity to the correlating parameters employed. It is shown that for an improved prediction method in components containing cracks the NSW crack growth model employed would benefit from a probabilistic analysis. This should be performed by considering the experimental scatter in failure strain, the creep stress index and in estimating the C* parameter.  相似文献   

9.
In the present study, a novel micromechanical approach is introduced to study the time-dependent failure of unidirectional polymer matrix composites. The main advantage of the present micromechanical model lies in its ability to give closed-form solutions for the effective nonlinear response of unidirectional composites and to predict the material response to any combination of shear and normal loading. The creep failure criterion is expressed in terms of the creep failure functions of the viscoelastic matrix material. The micromechanical model is also used to calculate these creep failure functions from the knowledge of the creep behavior of the composite material in only transverse and shear loadings, thus eliminating the need for any further experimentation. The composite material used in this study is T300/934, which is suitable for service at high temperatures in aerospace applications. The use of micromechanics can give a more accurate insight into the failure mechanisms of the composite materials in particular at high temperatures where the general behavior of the polymer matrix composite is governed by matrix viscoelasticity and the time-dependent failure of the matrix is a localized phenomenon. The obtained creep failure stresses are found to be in reasonable agreement with the experimental data.  相似文献   

10.
11.
12.
In this work, a model is constructed to account for the effect of oxidation of the fiber, fiber interface coating and surrounding matrix on the stress distribution and strain accumulation in ceramic–matrix composites. The model includes the role of the fabric architecture, the effect of porosity and the distribution of cracks in its formulation and utilizes oxidation rate constants and phenomenological models for the progress of oxidation as reported in literature.Dwell fatigue experiments were carried out for silicon carbide/silicon carbide nitride (SiC/SiNC) and Melt infiltrated silicon carbide/silicon carbide (MI SiC/SiC) composites to evaluate their time-dependent strain accumulation. Strain accumulation due to oxidation calculated by the model was compared to time-dependent strain obtained from experiment and showed that the rate of strain accumulation due to oxidation was low before the fibers were exposed to the environment but drastically increased after that. Such high rate of strain accumulation can be one of the main causes for failure of the composite.Model results showed that strain accumulation in both composites due to oxidation was dependent on the stress level with the SiC/SiNC accumulating more strain at similar stress levels. This can be explained by the higher modulus of the MI SiC/SiC that limits deformation, reducing crack density and accordingly decreasing the chance of oxygen to infiltrate the specimen and oxidize the fibers. Strain accumulation due to oxidation was also dependent on the fabric architecture and stress distribution within the unit cell. Additionally, comparing the effect of the value of the linear and parabolic oxidation rate constants reported by different researchers showed that not only is their absolute value important, but also their ratio to one another.  相似文献   

13.
A phenomenological-based, strain rate dependent failure theory, which is suitable for the numerical modelling of unidirectional (UD) carbon fibre reinforced polymer composites (CFRPs), is presented. A phenomenological-based approach is also proposed for the three-dimensional (3D) modelling of strain rate induced material hardening in UD polymer composites. The proposed theory and approach are implemented in the Finite element (FE) code ABAQUS/Explicit for one integration point solid elements. Validation is presented against experimental data from dynamic compressive tests using results available in the published literature.  相似文献   

14.
Experimentally achieved mechanical properties of nanotube–epoxy composites fail to match theoretical expectations; shortcomings are mainly attributed to poor dispersion. The elastic modulus of a well-dispersed single walled carbon nanotube (SWNT)-ionic liquid-epoxy composite was evaluated in tension and compared to predictions by a micromechanics homogenization model. The model takes into account the mechanical properties of the constituent phases in addition to SWNT aspect ratio, spatial distribution, dispersion, and agglomeration. These parameters were evaluated using information obtained via scanning and transmission electron microscopy. The Young’s modulus of the composite shows excellent agreement with the model at low concentrations, while discrepancies at high SWNT concentrations are possibly due to composite processing limitations. At high concentrations the uncured composite mixture is above the rheological percolation threshold. As the polymer network reaches its maximum capacity for well-dispersed SWNTs, increasing volume fraction does not result in further significant reinforcing effects.  相似文献   

15.
The compressive properties of epoxy with different carbon nanotubes (CNTs) contents at quasi-static and high strain rates loading had been investigated via experiment to evaluate the compressive failure behaviors and modes at different CNTs contents and different strain rates. The results indicated that the stress train curves were strain rate sensitive, and the compressive stiffness, compressive failure stress of composites with various CNTs contents was increased with the strain rates and CNTs contents. The compressive failure stress and the compressive failure modes of the composites were apparently different as the change of CNTs contents.  相似文献   

16.
17.
Time-dependent damage (matrix cracks) evolution in AS4/3501-6 cross-ply laminates was studied using constant strain rate and constant stress tests. First ply failure stress and strain as well as the matrix crack density at a given stress level were found to be strongly dependent on strain rate. Matrix crack density increased with creep time at a constant stress level. The compliance and creep rate of the laminate increased in the presence of these cracks. These results emphasize the importance of the knowledge of time-dependent damage evolution in a lamina/laminate of a polymer composite for reliable prediction of creep and creep rupture.  相似文献   

18.
A combined gel-casting and hot-pressing method was used to fabricate platelet-reinforced polymer matrix composites. Submicrometer thin alumina platelets were dispersed in a highly diluted polymer solution. A thermoplastic polyurethane elastomer was used as matrix for its high elasticity and excellent adhesion to the platelets. After dissolution of the polymer and casting, quick evaporation of the solvent triggered the formation of a polymer gel trapping the platelets in their well dispersed positions. The polymer–platelet gel densified during drying and the platelets were oriented horizontally due to the capillary forces and the large decrease in the thickness of the gel. The dried composites were hot-pressed to further improve the platelet orientation along the shear flow and close potential pores in the polymer. While the ultimate tensile strength of the composites gradually decreased with increasing platelet volume fractions, the increase in the elastic modulus and the stress necessary to deform the composite 10% was more than 100 and 18 times higher than the respective values of the pure polymer. The use of alumina platelets with an aspect ratio below the critical value allowed for the ductile platelet pull-out fracture mode. Since the polymer had to deform more to achieve identical deformation of the composite at higher platelet volume fraction, the strain at rupture steadily decreased. The incorporation of voids towards high platelet concentrations and the thereby triggered crack initiation and growth during straining lead to an additional decrease in the elasticity of composites with increasing platelet volume fractions. However, the extremely high extensibility of a polymer matrix allowed for the fabrication of composites that still deformed up to 162 ± 19% at platelet volume fractions as high as 0.33. When compared to other platelet-reinforced elastomers, the achieved platelet volume fraction is much higher and the relative increase in elastic modulus and stress at low strains is therefore much larger at the expense of a decrease in the strain at rupture. The fabrication method and designing principles employed in this study are transferable to other types of polymers and platelets and potentially allow the creation of new composites with tailored properties.  相似文献   

19.
The mechanical behavior of unidirectional fiber-reinforced polymer composites subjected to tension and compression perpendicular to the fibers is studied using computational micromechanics. The representative volume element of the composite microstructure with random fiber distribution is generated, and the two dominant damage mechanisms experimentally observed – matrix plastic deformation and interfacial debonding – are included in the simulation by the extended Drucker–Prager model and cohesive zone model respectively. Progressive failure procedure for both the matrix and interface is incorporated in the simulation, and ductile criterion is used to predict the damage initiation of the matrix taking into account its sensitivity to triaxial stress state. The simulation results clearly reveal the damage process of the composites and the interactions of different damage mechanisms. It can be concluded that the tension fracture initiates as interfacial debonding and evolves as a result of interactions between interfacial debonding and matrix plastic deformation, while the compression failure is dominated by matrix plastic damage. And then the effects of interfacial properties on the damage behavior of the composites are assessed. It is found that the interfacial stiffness and fracture energy have relatively smaller influence on the mechanical behavior of composites, while the influence of interfacial strength is significant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号