共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composites Part A》2002,33(10):1397-1401
Role of the residual stresses on the mechanical properties of metal–matrix composites is studied. It is shown that the stress relaxation can be responsible for the morphologies and spatial distribution of precipitates. Direct measurements of the residual stress is also emphasized and the influence of dislocations in the accommodation process and during interface crossing is exemplified. 相似文献
2.
International Journal of Fracture - Fracture of three-dimensional unidirectional composites is studied through Monte Carlo fracture simulations on model composites. Fracture develops in the model... 相似文献
3.
4.
5.
《Composites Part A》2002,33(1):43-52
Short bamboo fiber reinforced polypropylene composites (BFRP) and short bamboo–glass fiber reinforced polypropylene hybrid composites (BGRP) were fabricated using a compression molding method. Maleic anhydride polypropylene (MAPP) was used as a compatibilizer to improve the adhesion between the reinforcements and the matrix material. By incorporating up to 20% (by mass) glass fiber, the tensile and flexural modulus of BGRP were increased by 12.5 and 10%, respectively; and the tensile and flexural strength were increased by 7 and 25%, respectively, compared to those of BFRP. Sorption behavior and effects of environmental aging on tensile properties of both BFRP and BGRP systems were studied by immersing samples in water for up to 1200 h at 25°C. Compared to BFRP, a 4% drop in saturated moisture level is seen in BGRP. After aging in water for 1200 h, reduction in tensile strength and modulus for BGRP is nearly two times less than that of BFRP. Use of MAPP as coupling agent in the polypropylene matrix results in decreased saturated moisture absorption level and enhanced mechanical properties for both BFRP and BGRP systems. Thus it is shown that the durability of bamboo fiber reinforced polypropylene can be enhanced by hybridization with small amount of glass fibers. 相似文献
6.
Micro- or nano-fibrillar composites (MFCs or NFCs) are created by blending two homopolymers (virgin or recycled) with different
melting temperatures such as polyethylene (PE) and poly(ethylene terephthalate) (PET), and processing the blend under certain
thermo-mechanical conditions to create in situ fibrils of the polymer that has the higher-melting temperature. These resulting
fibrillar composites have been reported to possess excellent mechanical properties and can have wide ranging applications
with suitable processing under controlled conditions. However, the properties and applications very much depend on the morphology
of created polymer fibrils and their thermal stability. The present paper develops an understanding of the mechanism of micro-/nano-fibril
formation in PE/PET and polypropylene (PP)/PET blends by studying their morphology at various stages of extrusion and drawing.
It is revealed that this subsequent mechanical processing stretches the polymer chains and creates fibrils of very high aspect
ratios, thus resulting in superior mechanical performance of the composites compared to the raw blends. The study also identifies
the primary mechanical properties of the main types of MFCs, as well as quantifying their enhanced resistance to oxygen permeability.
Furthermore, the failure phenomena of these composites are studied via application of the modified Tsai–Hill criterion. In
addition to their usage as input materials in different manufacturing processes, possible applications of these fibrillar
composites in two different areas are also discussed, namely food packaging with controlled oxygen barrier properties and
biomedical tissue scaffolding. Results indicate a significant scope for using these materials in both areas. 相似文献
7.
The effect of strain rate on deformation microstructures and mechanical properties of Fe–18Cr–8Ni austenitic stainless steel was investigated at strain rates of from 10?3 to 100?s?1. The results indicated that the deformation mechanism of steel changes from transformation induced plasticity (TRIP) to TRIP?+?twinning induced plasticity (TWIP) effect when the strain rate is increased from 10?3 to 100?s?1. The yield strength of steel increases gradually with strain rate increased, while the tensile strength and elongation first decreases and then increases slowly. The changes in tensile strength and elongation are due to the change of deformation mechanism with the strain rate increased. 相似文献
8.
Lesley M. Hamming Rui Qiao Phillip B. Messersmith L. Catherine Brinson 《Composites Science and Technology》2009,69(11-12):1880-1886
This paper quantifies how the quality of dispersion and the quality of the interfacial interaction between TiO2 nanoparticles and host polymer independently affect benchmark properties such as glass transition temperature (Tg), elastic modulus and loss modulus. By examining these composites with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM), we demonstrate changes in properties depending on the adhesive/wetting or repulsive/dewetting interactions the nanoparticles have with the bulk polymer. We further quantify the dispersion of TiO2 nanoparticles in polymethylmethacrylate (PMMA) matrices by a digital–optical method and correlate those values to the degree of Tg depression compared to neat PMMA. Samples with the same weight percent of nanoparticles but better dispersion show larger shifts in Tg. 相似文献
9.
10.
W. J. Plumbridge C. R. Gagg 《Journal of Materials Science: Materials in Electronics》1999,10(5-6):461-468
To ensure reliable design of soldered interconnections as electronic devices become smaller, requires greater knowledge and understanding of the relevant mechanical behavior of solder alloys than are presently available. The present paper reports the findings of an investigation into the monotonic tensile properties of bulk samples of three solder alloys; a lead–tin eutectic and two lead-free solders (tin–3.5 copper and a tin–3.5 silver alloy). Temperatures between–10 and 75°C and strain rates between 10–1 and 10–3 s–1 have been studied. Both temperature and strain rate may have a substantial effect on strength, producing changes well in excess of 100%. Strength is reduced by lowering strain rate and increasing temperature, and Sn–37 Pb is usually most sensitive to the latter. Expressions for strain and strain rate hardening have been developed. The Sn–0.5 Cu alloy is usually the weakest and most ductile. Sn–37 Pb is strongest at room temperature but with increasing temperature and lower strain rates it becomes inferior to Sn–3.5 Ag. Ductility changes with temperature and strain rate for all three alloys are generally small with inconsistent trends. The role of such data in stress analysis and modeling is considered and the paramount importance of employing data for conditions appropriate to service, is emphasized. 相似文献
11.
The compressive mechanical properties of two kinds of closed-cell aluminum foam–polymer composites (aluminum–epoxy, aluminum–polyurethane) were studied. The nonhomogeneous deformation features of the composites are presented based on the deformation distributions measured by the digital image correlation (DIC) method. The strain fluctuations rapidly grow with an increase in the compressive load. The uneven level of the deformation for the aluminum–polyurethane composite is lower than that for the aluminum–epoxy composite. The region of the preferentially fractured aluminum cell wall can be predicted by the strain distributions in two directions. The mechanical properties of the composites are investigated and compared to those of the aluminum foams. The enhancement effect of the epoxy resin on the Young’s modulus, the Poisson’s ratio and the compressive strength of the aluminum foams is greater than that of the polyurethane resin. 相似文献
12.
The effect of fire on the tensile properties of carbon fibres is experimentally determined to provide new insights into the tensile performance of carbon fibre–polymer composite materials during fire. Structural tests on carbon–epoxy laminate reveal that thermally-activated weakening of the fibre reinforcement is the dominant softening process which leads to failure in the event of a fire. This process is experimentally investigated by determining the reduction to the tensile properties and identifying the softening mechanism of T700 carbon fibre following exposure to simulated fires of different temperatures (up to 700 °C) and atmospheres (air and inert). The fibre modulus decreases with increasing temperature (above ~500 °C) in air, which is attributed to oxidation of the higher stiffness layer in the near-surface fibre region. The fibre modulus is not affected when heated in an inert (nitrogen) atmosphere due to the absence of surface oxidation, revealing that the stiffness loss of carbon fibre composites in fire is sensitive to the oxygen content. The tensile strength of carbon fibre is reduced by nearly 50% following exposure to temperatures over the range 400–700 °C in an air or inert atmosphere. Unlike the fibre modulus, the reduction in fibre strength is insensitive to the oxygen content of the atmosphere during fire. The reduction in strength is possibly attributable to very small (under ~100 nm) flaws and removal of the sizing caused by high temperature exposure. 相似文献
13.
Strain-induced abnormal grain growth was observed along the gage length during high-temperature uniaxial tensile testing of rolled Mg–Al–Zn (AZ31) sheet. Effective strain and strain rates in biaxial forming of AZ31 sheets also affected the nature of grain growth in the formed sheet. For the uniaxial testing done at 400 °C and a strain rate of 10?1 s?1, abnormal grain growth was prevalent in the gage sections that experienced true strain values between 0.2 and 1.0. Biaxial forming of AZ31 at 5 × 10?2 s?1 and 400 °C also exhibited abnormal grain growth at the cross sections which experienced a true strain of 1.7. Uniaxially tested sample at 400 °C and a strain rate of 10?3 s?1, however, showed no abnormal grain growth in the gage sections which experienced true local strain values ranging from 1.0 to 2.3. The normalized flow stress versus temperature and grain size compensated strain rate plot showed that the deformation kinetics of the current AZ31 alloy was similar to that reported in the literature for AZ31 alloys. Orientation image microscopy (OIM) was used to study the texture evolution, grain size, and grain boundary misorientation during uniaxial and biaxial forming. Influence of deformation parameters, namely strain rate, strain, and temperature on grain growth and refinement were discussed with the help of OIM results. 相似文献
14.
《Materials Letters》2002,52(1-2):14-19
The effect of matrix microstructure on the mechanical properties of carbon fiber felts infiltrated by isothermal chemical vapor infiltration (CVI) has been studied by optical microscopy, scanning electron microscopy and three-point bending tests. The nonbrittle fracture behavior of the investigated composites is related to multiple crack deflections caused by the interfacial sliding between pyrocarbon layers with a varying texture degree and the delamination microcracking within the highly textured pyrocarbon layer. An increase of the flexural strength is observed by the composite having a multilayered pyrocarbon matrix. 相似文献
15.
《Composites Part A》2000,31(10):1139-1145
The mechanical properties of Al–Zn–Mg alloy reinforced with SiCP composites prepared by solidification route were studied by altering the matrix strength with different heat treatments. With respect to the control alloy, the composites have shown similar ageing behaviour in terms of microhardness data at 135°C. It was shown that although composites exhibited enhanced modulus values, the strengthening was found to be dependent on the damage that is occurring during straining. Thus the initial matrix strength plays an important role in determining the strengthening. Consequently, compression data had shown a different trend compared to tension. 相似文献
16.
《Composites Science and Technology》2004,64(13-14):2185-2195
Three different unidirectional polymer–glass composite systems involving phenolic and polyester resins were aged for 6 and 11 weeks in tap water and tested in the mode I double cantilever beam (DCB) test. The results showed a dramatic increase in water absorption and a decrease in fracture toughness for phenolic/glass systems. Fractographic analysis revealed interfacial debonding to be dominant failure mechanism, indicating a strong influence of water degradation on fracture toughness results. The interphase region of each system was investigated using the nano-indentation and the nano-scratch techniques before and after aging in water. The nano-indentation test produced a series of indents as small as 30 nm in depth, to detect water degradation of the material properties at the interphase region between the fibre and the matrix. The nano-hardness results indicated interdiffusion in water aged interphase regions. The nano-scratch test was used in conjuction with the nano-indentation test, in order to detect the width of the interphase regions before and after water degradation. It was shown, from the coefficient of friction and the scratch profile depth, that the interphase region width increased and the material properties degraded during water aging. Qualitative links between water degradation of the glass–polymer interphase on a nanometer level and interlaminar fracture toughness are discussed. 相似文献
17.
《Composites Part A》2004,35(1):17-22
The great number of glasses available from recycling activity and vitrification treatment of industrial wastes leads to the need for new applications, with the development of new materials, such as low-cost composite materials from a powder technology route. In the present work a variety of recycled glasses is investigated, in order to obtain aluminium reinforced glass matrix composites via cold-pressing and viscous flow sintering. A good compatibility between lead silicate glasses from cathode ray tubes dismantling and aluminium reinforcement is found to be effective. Composites exhibiting good mechanical properties were developed from these materials. A particular attention was due to fracture toughness (KIC) determination. The absolute KIC of glass matrix composites value remains low, but a notable increment in relation to unreinforced matrix is observed. 相似文献
18.
《Composites Science and Technology》2004,64(10-11):1539-1549
The effects of hydrostatic extrusion on particle cracking and on the subsequent tensile properties of some prototypical particle-reinforced metal–matrix composites are investigated. In most cases, tensile failure occurs through a plastic instability in accordance with the Considere criterion for necking. The corresponding failure strain is therefore dictated by the global flow and hardening characteristics of the composites, as influenced by the intrinsic flow properties of the matrix as well as the extent and rate of particle cracking. Such cracking leads to significant reductions in the hardening rate and thus causes a reduction in the failure strain relative to that of the neat matrix alloy. Extrusion prior to tensile testing has the effect of saturating the flow stress of the matrix and limiting the tensile ductility to low values, largely because of the very low hardening rate of the matrix. Particle cracking during extrusion causes a further reduction in ductility. The dominant role of the matrix hardening is demonstrated through re-tempering treatments of extruded billets prior to tensile testing. A micromechanical model of particle cracking is developed, taking into account the effects of both the hydrostatic and the deviatoric stress components in axisymmetric loadings. The model is used to rationalize the observed trends in damage accumulation with particle content, particle type, and loading configuration (tension vs. extrusion). 相似文献
19.
《International Journal of Fatigue》2002,24(2-4):215-221
The cyclic deformation behaviour of three metal–matrix composites, namely AA6061-T6 reinforced with 20 vol.% alumina particles and short-fibres, respectively, and pure aluminium reinforced with 20 vol.% short-fibres, has been investigated at temperatures between T=−100°C and T=300°C in total strain controlled symmetrical push–pull fatigue tests. The cyclic stress response exhibits initial cyclic hardening, subsequent saturation and cyclic softening, depending on the test parameters for temperatures lower than T=150°C. Initial cyclic hardening is less pronounced with increasing temperature and decreasing applied strain amplitude. Short-fibre reinforced composites — both with alloyed and unalloyed aluminium matrix — harden cyclically more than the particulate-reinforced composite. The comparison of the cyclic with monotonic stress–strain curves indicates that, depending on the testing conditions, both cyclic hardening and cyclic softening can occur. 相似文献
20.
《Composites Part A》2001,32(5):619-629
The structure–property relationship of wood flake–high-density polyethylene (HDPE) composites was studied in relation to the matrix agent melt flow behaviour and processing technique. The flake distribution and flake wetting were optimised to obtain acceptable mechanical properties in these composites using two processing techniques, namely twin-screw compounding and mechanical blending. The microstructure of the composites revealed that the twin-screw compounded composites based on medium melt flow index (MMFI) HDPE always achieved better flake wetting and distribution, and therefore had higher mechanical properties, than those mechanically blended composites or twin-screw compounded composites with low MFI (LMFI) HDPE. For 50:50 wt% composites the overall flake wetting, depending on processing technique and matrix flow behaviour, is ranked as compounded MMFI>compounded LMFI>blended MMFI>blended LMFI. However, the uniformity of flake distribution of the composites follows a somewhat different pattern, i.e. compounded MMFI>blended MMFI>compounded LMFI>blended LMFI. Evidence shows that the medium MFI HDPE penetrates into lumens of wood fibres in wood flakes. This phenomenon combined with flake wetting and flake distribution had a profound effect on the mechanical properties, in particular the impact strength. 相似文献