首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The goal of this work is to study the effect of high magnetic pulses on electrical property of carbon nanotube–polypyrrole (CNT–PPy) composites with different CNT concentrations. CNT–PPy composites are produced in fractions of 1, 5 and 9 wt%. During the polymerization process, the CNTs are homogeneously dispersed throughout the polymer matrix in an ultrasonic bath. Nanocomposite rods are prepared. After exposure to 30 magnetic pulses, the resistivity of the rods is measured. The surface conductivity of thin tablets of composites is studied by 4-probe technique. The magnitude of the pulsed magnetic field is 10 Tesla with time duration of 1.5 ms. The results show that after applying 30 magnetic pulses, the electrical resistivity of the composites decreases depending on the concentration of CNTs in the composites. The orientation of CNTs is probed by atomic force microscopy (AFM) technique. AFM images approved alignment of CNT–polymer fibres in the magnetic field. We found that the enhancement in the electrical properties of CNT–PPy composites is due to rearrangement and alignment of CNTs in a high magnetic field. The stability of nano-composites is studied by Fourier transform infrared spectroscopy.  相似文献   

2.
A thermotropic liquid crystalline polymer (TLCP) blend with 1?wt% multiwall carbon nanotubes (MWCNTs) was prepared by melt compounding. Morphological observations of the blend show that the chemical-treated MWCNTs were well dispersed in the TLCP matrix with a good interface. MWCNTs have little effects on the thermal and rheological properties of pure TLCP. TLCP fibers with and without MWCNTs were prepared at certain drawing ratios by a melt spinning method. The degree of orientation of TLCP chains is enhanced by MWCNT micro-clusters during the fiber formation. The mechanical properties of TLCP/MWCNT fibers are significantly increased by 34.5?% for tensile strength and 38.0?% for tensile modulus in comparison with those of pristine TLCP fibers, due to the synergistic effects of MWCNT and TLCP.  相似文献   

3.
M-type barium ferrite with Mg–Ti substitution and MWCNT addition was synthesized using high-energy ball milling. The prepared sample was further analyzed using X-ray diffraction, field emission scanning electron microscope (FESEM), vibrating sample magnetometer and vector network analyzer. The results showed that the particle size had a wide range of distribution, and a hexagonal structure was formed in the sample. The sample was observed to have lower saturation magnetization and coercivity after Mg–Ti was substituted with MWCNT and added into the barium hexaferrite. Reflection loss was studied as a function of frequency and thickness of the sample. For Mg–Ti substituted barium hexaferrite composite with a thickness of 2.0 mm, the reflection loss peaked at ?28.83 dB at a frequency of 15.57 GHz with a bandwidth of 6.43 GHz at a loss of less than ?10 dB. The microwave absorption primarily resulted from magnetic losses caused by magnetization relaxation, domain wall resonance, and natural resonance. FESEM micrograph demonstrated that carbon nanotubes were attached to the external surface of the ferrite nanoparticles. The investigation of the microwave absorption indicated that with an addition of carbon nanotubes, the real and imaginary parts of permittivity and reflection loss had enhanced to ?34.16 dB at a frequency of 14.19 GHz with a bandwidth of 5.72 GHz.  相似文献   

4.
A semi-doped polyaniline (PANI)–dodecylbenzenesulfonic acid (DBSA) complex is added with a suspension of multiwall carbon nanotubes (MWCNT)–divinylbenzene (DVB) to prepare PANI–MWCNT based thermosetting conductive resin system. Firstly, unreinforced nanocomposites with various loading of MWCNT are prepared. Continuous improvement in the electrical conductivity is observed with increasing MWCNT loading in the composite, while improvement in the mechanical properties is observed only up to 0.2 wt% MWCNT loading. On further MWCNT loading, the decrease in mechanical properties is observed. Flexural strength increased by 18% with 0.2 wt% of MWCNT in the unreinforced nanocomposite while electrical conductivity increased continuously to 0.68 S/cm (at 0.5 wt% of MWCNT loading) from 0.25 S/cm (neat sample). DSC and TGA analysis show that MWCNT effectively contributed to enhance the scavenging effect of PANI, affecting degree of DVB polymerization at higher loading of MWCNT. Samples were characterized by FTIR analysis. DMA analysis is also performed to understand the mechanical behavior of the cured unreinforced nanocomposite under dynamic loading. SEM observation has been employed to understand the dispersion behavior of MWCNT into the matrix. PANI-wrapping behavior on MWCNT is observed from the SEM images. Wrapping of PANI on MWCNT increased doping state and surface area of PANI which subsequently contribute to the increased scavenging behavior of PANI at higher MWCNT loading. A structural thermosetting nanocomposite with electrical conductivity of 0.68 S/cm, flexural modulus of 1.87 GPa and flexural strength up to 35 MPa is prepared. In addition, PANI–DBSA/DVB matrix with MWCNT is also used to impregnate carbon fabrics to prepare highly conductive CFRPs. A CFRP with 1.67 S/cm electrical conductivity in through-thickness direction and 328 MPa flexural strength is obtained with the addition of 0.2 wt% MWCNT into the resin system.  相似文献   

5.
In this study, the effects of multi-walled carbon nanotube (MWCNT) dispersion and poly(styrene-co-acrylonitrile)-g-maleic anhydride (SAN-g-MAH) as a compatibilizer on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), and rheological properties of polycarbonate (PC)/poly(acrylonitrile–butadiene–styrene) (ABS)/MWCNT composites were investigated. The morphological results from the scanning and transmission electron microscope images showed that the droplet size of the ABS decreased when the SAN-g-MAH (5 phr) was added to the PC/ABS (80/20) blend. This result suggests that the SAN-g-MAH acts as an effective compatibilizer in the PC/ABS blend. Also, the MWCNT appeared to be located more in the ABS phase (dispersed phase) than in the PC phase (continuous phase). The interfacial tension of the ABS/MWCNT composite was lower than that of the PC–MWCNT composite, and the lower value of interfacial tension of the ABS/MWCNT composite affected the preferred location of the MWCNT in the ABS phase more than in the PC phase. The electrical conductivities and EMI SE of the PC/ABS/MWCNT composite with the compatibilizer were higher than those of the composite without compatibilizer. The complex viscosity of the PC/ABS/MWCNT composite containing the SAN-g-MAH increased with the frequency compared to that of the composite without SAN-g-MAH. This result is possibly due to the increased degree of MWCNT dispersion. The result of rheological properties is consistent with the results of the morphology, electrical conductivity, and EMI SE of the PC/ABS/MWCNT composite.  相似文献   

6.
Amino functionalized multiwalled carbon nanotubes (A-MWCNTs) reinforced two phase (A-MWNT–epoxy) and three phase (A-MWCNTs–carbon fiber–epoxy) nanocomposites were fabricated with 0.25 wt%, 0.5 wt% and 1.0 wt% loadings of A-MWCNTs. It is observed that, A-MWCNTs can improve the crosslink density of epoxy significantly. Fracture toughness of epoxy matrix is found to increase up to an optimum crosslink density improvement, indicating the role of crosslink density in imparting toughness to epoxy apart from the crack deflection contributions of A-MWCNTs. In addition to that, this study infers that, tensile, flexural properties of the three phase composites are strongly influenced by the fracture toughness changes of the matrices. This study, thus proposes additional mechanisms of toughness enhancements for two phase and mechanical properties enhancements for three phase composites imparted by A-MWCNTs.  相似文献   

7.
Co1?xNix alloy nanoparticles (x = 0.2, 0.5, 0.6, and 0.8) with the diameter 15–28 nm attached on the surface of multi-walled carbon nanotubes (MWCNTs) were prepared to form Co1?xNix/MWCNT nanocomposites by microwave irradiation. Experimental results demonstrated that Co1?xNix alloy nanoparticles with quasi-spherical and face-centered cubic structure had been attached on the MWCNTs, the composition and size of Co1?xNix alloy nanoparticles could be controlled through adjusting the atomic ratios of metal Co to Ni in the mixed acetate solution, the microwave power and microwave irradiation time, respectively. Both the coercivity and the saturation magnetization of Co1?xNix alloy nanoparticles increased with increasing Co concentration from x = 0.8 to 0.5, and decreased when Co concentration was increased from x = 0.5 to 0.2. These confirm that microwave synthesis is promising for fabricating alloy nanoparticles attached on MWCNTs for magnetic storage and ultra high-density magnetic recording applications.  相似文献   

8.
为了提高Lyocell基炭纤维的得率及其力学性能,纺制了MWCNT/Lyocell纤维并以此为原丝制备了炭纤维.采用广角X-衍射(WAXD)、热失重分析(TGA)、扫描电镜(SEM)、强度仪等分析了试样的结构与性能.结果表明:MWCNT/Lyocell纤维具有纤维素Ⅱ晶型的结构,纤维表面光滑且截面为圆形,符合优质炭纤维原幺幺的要求.以此为原丝所制炭纤维中,MWCNTs分布均匀;与纯Lyocell基炭纤维相比,掺杂MWCNTs的Lyocell基炭纤维的力学性能明显提高,其中,掺杂质量分数1% MWCNTs的Lyocell基炭纤维的强度和模量分别比纯Lyocell基炭纤维提高70%和116%.同时掺杂MWCNTs还可以提高Lyocell纤维的热稳定性,进而提高Lyocell基炭纤维的得率.  相似文献   

9.
以多壁碳纳米管(MWCNT)为基核,以钛酸丁酯为前驱体,分别用溶胶-凝胶法和水热法制备碳纳米管/二氧化钛纳米复合光催化材料.用X射线衍射仪(XRD)、透射电子显微镜(TEM)对样品进行了表征,研究了溶胶-凝胶法和水热法工艺的控制对碳纳米管/二氧化钛复合光催化剂显微组织及性能的影响.以甲基橙为目标降解物,考察了样品的自然光催化活性.结果表明,所得复合粉体中仅有碳纳米管和锐钛型二氧化钛两种物相,其中采用水热法所得样品,其纳米级的球形二氧化钛颗粒可均匀吸附在碳纳米管表面.  相似文献   

10.
This research conducted ring opening polymerization (ROP) of ?-caprolactone (C.L.) with a novel initiator, namely; Eosin Y functionalized multiwalled carbon nanotube (MWCNT) at 140 °C with nitrogen sparge under different concentrations. ROP of C.L. carried out at two different experimental conditions similar to variations in [M0/I0] and [C.L.]. Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy confirmed the structure of MWCNT-Eosin Y initiated ROP of C.L. Gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), UV–visible spectroscopy (UV–vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) further characterized the structure. UV–visible spectroscopy determined the binding constant (K), for samples prepared under different [C.L.].  相似文献   

11.
活化MWCNT/PHBV复合材料的形貌与结晶性能   总被引:1,自引:0,他引:1  
本工作采用混合强酸H2SO4∶HNO3(V∶V)=3∶1活化多壁碳纳米管,结合超声分散技术,利用溶液浇铸法制备多壁碳纳米管(MWCNT)和聚羟基丁酸戊酸酯(PHBV)复合材料。场发射扫描电镜观察MWCNT和MWCNT/PHBV的表面形貌,DSC和XRD研究了PHBV的结晶热力学行为。酸化处理后的碳纳米管长径比变小,粒径趋于均匀,可以比较均匀地分散在PHBV中。DSC和XRD结果显示,碳纳米管在PHBV结晶过程中起异相成核作用,加入碳纳米管后,PHBV的晶型不发生改变,MWCNT/PHBV的结晶温度和结晶焓升高,结晶速率和热稳定性提高。  相似文献   

12.
Nanostructured Al2024–multiwall carbon nanotubes (MWCNTs) composites were produced using optimized mechanical milling and hot pressing methods. Nanostructured Al2024 powder was first prepared through 30 h mechanical milling of the alloy powder. MWCNTs up to 3 vol.% were added to the milled Al2024 powder and milled for different times. Differential thermal analysis (DTA) and X-ray diffraction (XRD) were used to assess the structural changes and thermal behavior during mechanical milling and hot pressing. Hardness and compression tests were applied on bulk samples to evaluate their mechanical properties. Mechanical milling applied on Al2024 powders for 30 h resulted in the grain refinement to ~30 nm. DTA analysis showed an endothermic peak at ~632 °C due to Al2024 melting and an exothermic peak between 645 and 658 °C related to Al and MWCNTs reaction. Mechanical milling of nanocomposite powder for 4 h and following hot pressing at 500 °C under a pressure of 250 MPa for 0.5 h were selected as optimized conditions for bulk nanocomposite preparation. With MWCNTs addition up to 2 vol.%, relative density remained at 98%, and hardness increased to 245 HV. Compressive strength of nanocomposites found a maximum value of 810 MPa at 2 vol.% MWCNTs addition which is 78%, 34% and 12% greater than that for Al2024–O, Al2024–T6 and nanostructured Al2024, respectively.  相似文献   

13.
《Materials Research Bulletin》2013,48(11):4785-4790
Monodisperse CoxNi1−xFe2O4 nanoparticles (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1) with controllable composition attached on the multi-walled carbon nanotubes (MWCNTs) were prepared by microwave-polyol method. The composition of CoxNi1−xFe2O4 nanoparticles can be controlled through adjusting the atomic ratios of cobalt and nickel nitrate in the mixed solution. The influence of the microwave power and microwave irradiation time on the monodispersion of nanoparticles was also investigated. The results show quasi-spherical CoxNi1−xFe2O4 nanoparticles with the face-centered cubic structure and average crystallite size (6 nm) are uniformly dispersed on MWCNTs. The saturation magnetization of CoxNi1−xFe2O4/MWCNT nanocomposites increases gradually from 12.90 to 20.03 emu/g with increasing Co2+ concentration. The coercivity is almost zero at room temperature, which indicates the superparamagnetic behavior.  相似文献   

14.
Highly conducting polyaniline (PANI)–multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by in situ polymerization. The FTIR and XRD show systematic shifting of the characteristic bands and peaks of PANI, with the increase in MWCNT phase, suggesting significant interaction between the phases. The SEM and TEM pictures show thick and uniform coating of PANI over surface of individual MWCNT. Based on observed morphological features in SEM, the probable formation mechanism of these composites has been proposed. The electrical conductivity of PANI–MWCNT composite (19.7 S cm?1) was even better than MWCNT (19.1 S cm?1) or PANI (2.0 S cm?1). This can be ascribed to the synergistic effect of two complementing phases (i.e. PANI and MWCNT). The absorption dominated total shielding effectiveness (SE) of ?27.5 to ?39.2 dB of these composites indicates the usefulness of these materials for microwave shielding in the Ku-band (12.4–18.0 GHz). These PANI coated MWCNTs with large aspect ratio are also proposed as hybrid conductive fillers in various thermoplastic matrices, for making structurally strong microwave shields.  相似文献   

15.
热电转换技术能将大量的废弃热能转换为电能以重新利用,是一种绿色能源转换技术,可以有效提高能源利用效率,缓解煤炭、石油等主要化石类能源过度开采、使用带来的能源危机及环境污染问题,因此受到科研工作者的广泛关注,是近年来的研究热点。基于此,本文以电子型导电高聚物中机能较优的聚(3, 4-乙烯二氧噻吩)(PEDOT)作为研究主体,通过化学原位氧化聚合将多壁碳纳米管(MWCNT)复合到载体中得到MWCNT/PEDOT复合材料。利用XRD、拉曼、TEM及正电子湮没寿命(PAL)等方法对MWCNT/PEDOT复合材料的形貌和微观结构进行了系统研究,研究表明:当MWCNT含量高于24.9wt%时,复合材料中出现MWCNT团聚现象,其分散性变差。同时,MWCNT/PEDOT复合材料的热电性能测试结果显示,未掺杂PEDOT的电导率仅为7.5 S·m?1,而MWCNT含量为30.1wt%时,该复合材料的电导率高达566.59 S·m?1,提高近76倍。同时,30.1wt%MWCNT/PEDOT的功率因子(814.3×10?4 μW·(m·K2)?1)相对于未掺杂PEDOT(14.5×10?4 μW·(m·K2)?1)提高约56倍,这主要是由于PEDOT分子链与MWCNT掺杂物间π-π相互作用及MWCNT的高导电性。随着MWCNT含量的增加,PAL测试结果中第一寿命成分τ1(即正电子在材料中湮没的第一寿命成分)的下降证实了该复合材料中MWCNT与PEDOT间界面变小或者界面间相互作用减弱,导致其热导率相对于未掺杂PEDOT有一定的上升,但远远低于功率因子的升高。最终,该MWCNT/PEDOT复合材料的热电优值(即热电材料ZT值)由0.015×10?4升至0.45×10?4,增加了约30倍。结果表明:掺杂的高电导率MWCNT能够极大地提高PEDOT类电子型导电聚合物的热电性能。   相似文献   

16.
实验提出以多壁碳纳米管(MWCNT)/ZnO纳米线复合材料作为场发射阴极薄膜,研究其图形化制备工艺以及其场发射特性.用丝网印刷工艺制备图形化MWCNT/ZnO纳米线复合阴极薄膜,实验获得合适的浆料配比以及适合的烘烤和烧结温度.对MWCNT/ZnO纳米线样品进行SEM分析和场发射特性测试,发现图形化阴极设计提高了场发射电流,并且改善场发射发光均匀度;材料组分的低维化明显降低场发射开启电压;加电老练处理有效改善场发射特性.  相似文献   

17.
通过静电纺丝制备PAN以及PAN/MWCNT平行纤维膜,纤维直径在100-300nm之间。分析结果表明,随着转筒转速的增大,纤维平行取向增强,但达到一定转速后,纤维平行取向效果变差。MWCNT沿纤维轴向排列,随着MWCNT含量的增加,纤维表面变得粗糙并且直径变得粗细不均。MWCNT的加入增强了纤维膜的拉伸强度和拉伸模量,同时使PAN环化反应开始温度以及热解温度提前,有利于后续预氧化和碳化的进行。但当MWCNT含量达到10wt%后,其拉伸强度下降。  相似文献   

18.
Polypyrrole (PPy) nanocomposites were synthesized using ferric chloride (FeCl3) as an oxidant by in situ polymerization at room temperature in which reduced graphene oxide- multi-walled carbon nanotubes (RGO–MWCNT) and zinc oxide (ZnO) were used as fillers. RGO–MWCNT and ZnO were synthesized by solution mixing and surfactant assistant precipitation respectively. The RGO–MWCNT–ZnO /PPy nanocomposites were prepared by loading 2, 5, 10 and 20 wt% of RGO–MWCNT:ZnO (1:1) in PPy to measure the electrical conductivity. The PPy nanocomposites were characterized by using FTIR, X-ray diffraction and FESEM. Furthermore, these RGO–MWCNT–ZnO/PPy nanocomposites were investigated to study sensing of ammonia gas at room temperature. The response of 20 wt% loading RGO–MWCNT–ZnO/PPy was observed to be 325% towards 200 ppm of ammonia gas.  相似文献   

19.
In the present work, the thermal conductivity and viscosity of hydroxyl (–OH) functionalized multi-walled carbon nanotubes (MWCNTs)–Dowtherm A (eutectic mixture of biphenyl (C12H10) and diphenyl oxide (C12H10O)) nanofluids are discussed. As-received hydroxyl (–OH) functionalized MWCNTs are characterized using x-ray diffraction (XRD), FT-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and thermogravimetry, differential thermogravimetry, and differential scanning calorimetry (TGA-DTG/DSC) analysis. Hydroxyl (–OH) functionalized MWCNT–Dowtherm A nanofluids are prepared in different concentrations (0.001–0.005?g) of MWCNT and characterized at various temperatures (303–323?K). The thermal conductivity of hydroxyl (–OH) functionalized MWCNT–Dowtherm A nanofluids increases with the concentration of carbon nanotubes as well as with temperature. The possible mechanism for the enhancement observed may be ascribed to the percolation of heat through the nanotubes to form a tri-dimensional network. Also, as the temperature increases, the viscosity of the nanofluid decreases, which results in an increase in Brownian motion of nanoparticles, this sets convection-like effects resulting in enhanced thermal conductivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号