首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Experimental study is carried out on the stitching reinforcement of composite laminates containing a circular hole. First, the tensile strength and stiffness are measured, and their dependence on stitching parameters such as stitching needle span, row spacing, edge distance and stitching type are analyzed. Next, the strain distribution and concentration are investigated analytically and experimentally for different stitching parameters, external load and edge location of the hole. It is shown that the results of stitching reinforcement are quite different for composite laminates with a circular hole, which could provide proper stitching parameters for designers.  相似文献   

2.
Background/PurposeAn analytical solution is presented to predict the mean axial collapse forces of fiber reinforced conical shells under thermal loading, in which the fibers wrapped orientation is arbitrary;MethodsAnalytical method and finite element simulate;ResultsThe influences of thermal loading, fibers wrapped orientations, geometrical eccentricity factor and proportionality coefficient on the axial collapse force of fiber reinforced conical shells are given.ConclusionThe collapse loading Pm of fiber-reinforced conical shells appears in the maximum value under different thermal environment when the fibers wrapped direction equals 45°. By optimizing the wrapping orientation of fiber layers, the capability of energy absorption of fiber-reinforced conical shells can be enhanced.  相似文献   

3.
4.
The distributions of properties across the thickness (core) and in the plane (face sheets) that minimise the interlaminar stresses at the interface with the core are determined solving the Euler–Lagrange equations of an optimisation problem in which the membrane and transverse shear energy contributions are made stationary. The bending stiffness is maximised, while the energy due to interlaminar stresses is minimised. As structural model, a refined zig-zag model with a high-order variation of displacements is employed. Simplified, sub-optimal distributions obtainable with current manufacturing processes appear effective for reducing the critical interfacial stress concentration, as shown by the numerical applications.  相似文献   

5.
A generalized Irwin model is proposed to investigate elastic–plastic fracture behavior of a bi-layered composite plate with a sub-interface crack under combined tension and shear loading. The dependence of the stress intensity factors, the plastic zone size, the effective stress intensity factor and the crack tip opening displacement on the crack depth h, the Dundurs’ parameters and the phase angle θ is discussed in detail. Numerical results show that in most cases, if the crack is embedded in a stiffer material, when the crack is close to the interface, the plastic zone size and the crack tip opening displacement will increase. On the contrary, if the crack is embedded in a softer material, when the crack is close to the interface, the plastic zone size and the crack tip opening displacement will decrease.  相似文献   

6.
Cold-lamination-bending (CLB) of glass consists, first, in constraining the unbonded glass-interlayer package in the desired curved shape and, second, in performing the lamination process in autoclave. Releasing the laminate, the curvature is only partially maintained through the interlayer bond, due to an initial spring-back followed by the relaxation of the polymeric interlayer. Here, the whole process of single-curvature CLB, including the phase of release and the consequent contact problem with the constraining mould, is analyzed using sandwich beam theory. Comparisons are made between “stiff” interlayers (like Ionoplastic Polymers) and “soft” interlayers (like PVB). The time-dependent redistribution of stresses due to the interlayer viscosity is found for any assigned initial shape of the mould. Remarkably, the constant-curvature shape, indeed the most used, provokes shear stress concentrations in the interlayer with consequent risks of delamination. The sinusoidal shape, which for typical values of the deformation inappreciably differs from the circular one, provides a much smoother distribution of the shear stresses. A properly-designed gradual release of the laminated glass from the mould can substantially contribute to mitigate the peak stresses.  相似文献   

7.
A quasi-isotropic CFRP laminate, containing a notch or circular hole, is subjected to combined tension and shear, or compression. The measured failure strengths of the specimens are used to construct failure envelopes in stress space. Three competing failure mechanisms are observed, and for each mechanism splitting within the critical ply reduces the stress concentration from the hole or notch: (i) a tension-dominated mode, with laminate failure dictated by tensile failure of the 0° plies, (ii) a shear-dominated mode entailing microbuckling of the −45° plies, and (iii) microbuckling of the 0° plies under remote compression. The net section strength (for all stress states investigated) is greater for specimens with a notch than a circular hole, and this is associated with greater split development in the load-bearing plies. The paper contributes to the literature by reporting sub-critical damage modes and failure envelopes under multi-axial loading for two types of stress raiser.  相似文献   

8.
The paper concerns local effects occurring in the vicinity of junctions between different cores in sandwich beams subjected to tensile in-plane loading. It is known from analytical and numerical modelling that these effects display themselves by an increase of the bending stresses in the faces as well as the core shear and transverse normal stresses at the junction. The local effects have been studied experimentally to assess the influence on the failure behaviour both under quasi-static and fatigue loading conditions. Typical sandwich beam configurations with aluminium and glass-fibre reinforced plastic (GFRP) face sheets and core junctions between polymer foams of different densities and rigid plywood or aluminium were investigated. Depending on the material configuration of the sandwich beam, premature failure accumulating at the core junction was observed for quasi-static and/or fatigue loading conditions. Using Aluminium face sheets, quasi-static loading caused failure at the core junction, whereas no significance of the junction was observed for fatigue loading. Using GFRP faces, a shift of the failure mode from premature core failure in quasi-static tests to face failure at the core junction in fatigue tests was observed. In addition to the failure tests, the sandwich configurations have been analysed using finite element modelling (FEM) to elaborate on the experimental results with respect to failure prediction. Both linear modelling and nonlinear modelling including nonlinear material behaviour (plasticity) was used. Comparing the results from finite element modelling with the failure behaviour observed in the quasi-static tests, it was found that a combination of linear finite element modelling and a point stress criterion to evaluate the stresses at the core junction can be used for brittle core material constituents. However, this is generally not sufficient to predict the failure modes and failure loads properly. Using nonlinear material properties in the modelling and a point strain criterion improves the failure prediction especially for ductile materials, but this has to be examined further along with other failure criteria.  相似文献   

9.
This paper presents two modelling strategies for the simulation of low velocity impact induced damage onset and evolution in composite plates. Both the strategies use a global–local technique to refine the mesh in the impact zone in order to increase the accuracy in predicting the impact phenomena without affecting the computational cost. Cohesive elements are used to simulate the inter-lamina damage behaviour (delaminations) and Hashin’s failure criteria are adopted to predict the intra-lamina failure mechanisms. The two modelling strategies differ in terms of input parameters for the inter-lamina and intra-lamina damage evolution laws and in terms of modelling solutions in the impacted area. Comparisons between numerical and experimental results on composite plates subjected to different impact energies, according to the ASTM D7136 requirements, have been used to assess the peculiarities and the fields of application for the two proposed modelling strategies. Both the strategies have been tested by adopting the finite element code ABAQUS®. The different approaches to set the parameters of cohesive elements’ constitutive laws and Hashin’s criteria and the different choices made in quantifying the dependence of failure criteria on the finite elements’ average size have been taken into account.  相似文献   

10.
The objective of this paper is to investigate the structural response of carbon fiber sandwich panels subjected to blast loading through an integrated experimental and numerical approach. A total of nine experiments, corresponding to three different blast intensity levels were conducted in the 28-inch square shock tube apparatus. Computational models were developed to capture the experimental details and further study the mechanism of blast wave-sandwich panel interactions. The peak reflected overpressure was monitored, which amplified to approximately 2.5 times of the incident overpressure due to fluid-structure interactions. The measured strain histories demonstrated opposite phases at the center of the front and back facesheets. Both strains showed damped oscillation with a reduced oscillation frequency as well as amplified facesheet deformations at the higher blast intensity. As the blast wave traversed across the panel, the observed flow separation and reattachment led to pressure increase at the back side of the panel. Further parametric studies suggested that the maximum deflection of the back facesheet increased dramatically with higher blast intensity and decreased with larger facesheet and core thickness. Our computational models, calibrated by experimental measurements, could be used as a virtual tool for assessing the mechanism of blast-panel interactions, and predicting the structural response of composite panels subjected to blast loading.  相似文献   

11.
The aim of this paper is to investigate the dynamic behavior of singly and doubly-curved panels reinforced by curvilinear fibers. The Variable Angle Tow (VAT) technology allows the placement of fibers along curvilinear paths with the purpose of improving dynamic performance of plates and shells. The effect of the variation of constants which define analytically the fiber orientation is also investigated by several parametric studies. The Carrera Unified Formulation (CUF) with different thickness functions along the three orthogonal curvilinear directions is the basis of the present theoretical model. Various doubly-curved laminated panels reinforced by curvilinear fibers are analyzed using several structural theories. The Local Generalized Differential Quadrature (LGDQ) method is employed to solve numerically free vibration problems. Compared to the well-known GDQ method from which it descends, the LGDQ is characterized by banded matrices instead of full ones, since the current technique considers only few points of the whole domain. Therefore, the solution of the equation system needs a lower computational effort.  相似文献   

12.
Poly(vinyl chloride)-based (PVC) multilayered composites with alternating foam and film layer structure were designed through a multilayered co-extrusion system. Light-weight composites with good soundproofing properties were obtained. The effects of foaming process, acoustic impedance mismatch, and layer number on the soundproofing properties were investigated. Sound transmission loss (STL) was used to characterize the soundproofing properties. The experimental results revealed that the foam/film multilayered composites showed higher STL and lower density than the film/film multilayered composite without foaming process. In addition, the multilayered composite presented better soundproofing properties when there was a bigger acoustic impedance mismatch between adjacent layers. Moreover, as the layer number increased from 2 to 16, the STL of the PVC composite increased gradually and reached a maximum at 8 layers (an average value of 26.3 dB). However, the STL of 16-layer composite decreased because of the reduction of scattering and reflection of sound waves among the bubbles.  相似文献   

13.
An energy-based model is developed to predict the evolution of sub-critical matrix crack density in symmetric multidirectional composite laminates for the case of multiaxial loading. A finite element-based numerical scheme is also developed to evaluate the critical strain energy release rate, GIc, associated with matrix micro-cracking, a parameter that previously required fitting with experimental data. Furthermore, the prediction scheme is improved to account for the statistical variation of GIc within the material volume by using a two-parameter Weibull distribution. The variation of GIc with increasing crack density is also accounted for based on reported experimental evidence. The simulated results for carbon/epoxy and glass/epoxy cross-ply laminates demonstrate the ability of the improved model to predict the evolution of multidirectional ply cracking. By integrating this damage evolution model with the synergistic damage mechanics approach for stiffness degradation, the stress-strain response of the studied laminates is predicted. Finally, biaxial stress envelopes for ply crack initiation and pre-determined stiffness degradation levels are predicted to serve as representative examples of stiffness-based design and failure criterion.  相似文献   

14.
The transverse damage initiation and extension of a unidirectional laminated composite under transverse tensile/compressive loading are evaluated by means of Representative Volume Element (RVE) presented in this paper based on an advanced homogenization model called finite-volume direct averaging micromechanics (FVDAM) theory. Fiber, fiber-matrix interface and matrix phases are considered within the RVE in determining fiber-matrix interface debonding and matrix cracking. The simulated fracture patterns are shown to be in good agreement with experimental observations.  相似文献   

15.
Attachment mode performance of network-modeled ballistic fabric shielding   总被引:2,自引:0,他引:2  
A central issue in the use of ballistic fabric shielding is the mode of attachment to the structure that it is intended to protect. In order to investigate this issue, a discrete multi-scale yarn-network model is developed for structural fabric undergoing ballistic impact, based on work found in Zohdi and Powell [Zohdi TI, Powell D. Multiscale construction and large-scale simulation of structural fabric undergoing ballistic impact. Comput Meth Appl Mech Eng 2006;195:94–109] and Zohdi [Zohdi TI. Modeling/simulation of progressive penetration of multilayered ballistic fabric shielding. Comput Mech 2002;29:61–7]. The model is comprised of a network of yarn with stochastic properties determined by smaller-scale fibrils, which are randomly misaligned. The effects of stochasticity on the overall response are explored, and the model is compared against macro-scale experiments. The key feature of the model is the fact that it does not depend on phenomenological parameters, and can be calibrated by simply measuring the properties of an individual, smallest-scale, fibril. The properties of a fibril are easily ascertained from a simple tension test. The response of the overall fabric model and ballistic experiments are in excellent agreement. The model indicates that fabric which is attached by being pinned at the corners generally absorbs more energy, relative to fabric clamped along the sides. The basis for this result is discussed at length in the body of this work. Furthermore, it is observed that a uniform-yarn model, one which ignores the stochastic nature of the yarn, over-estimates the amount of energy absorbed.  相似文献   

16.
We consider a composite package formed by two curved external Euler-Bernoulli beams, which sandwich an elastic core with negligible bending strength but providing the shear coupling of the external layers. This coupling considerably affects the gross response of the composite structure. There is an extensive literature on straight sandwich beams of this type, but very little attention has been paid to the effects of curvature. Here, an analytical linear elastic model is proposed for beams with arbitrary variable curvature. Equilibrium equations and boundary conditions are obtained through a variational approach. Useful simplifications are possible for the case of moderately curved beams and beams with constant curvature.  相似文献   

17.
A method of solution that extends to the case of curved laminated structures the traditional approach developed by Newmark et al. for straight beams is presented. The method is specialized to curved laminated glass, a composite formed by two external glass layers that sandwich a very thin polymeric interlayer. The effect of curvature on the shear coupling of glass plies through the interlayer is examined in the paradigmatic example of a laminated beam with constant moderate curvature under radial loading with different boundary conditions, varying the initial camber, the end constraints and the elastic properties of the polymer. Comparisons with numerical experiments confirm the accuracy of the proposed modeling. In general the response of a curved structure is greatly influenced by the axial force it undergoes, and such internal action is mainly governed, for fixed applied loads, by the boundary conditions at the extremities. The axial force produces the arch-response of the structure, which is not substantially affected by the shear coupling of glass through the interlayer. On the other hand, such coupling has major effects on the bending properties.  相似文献   

18.
In this paper, a fatigue model of composite is established to predict multiaxial fatigue life of composite bolted joint under constant amplitude cycle loading. Firstly, finite element model is adopted to investigate stress state of composite bolted joint under constant amplitude cycle loading. Secondly, Tsai–Hill criterion is used to calculate equivalent stress of joint. At last, modified S–N fatigue life curve fitted by unidirectional laminate S–N curve which takes ply angle and stress ratio into consideration is adopted to determine fatigue life of composite. Calculation results of equivalent stress model show excellent agreement with experiments of composite bolted joint.  相似文献   

19.
20.
Steel fibres were used to reinforce the layered targets with surface-to-surface combination. The two- and three-layer metal targets with a total thickness of 5 mm were fabricated by explosive welding. The damage mechanism and the anti-penetration performance of the targets were studied experimentally and numerically using the LS-DYNA 3D finite element code. The effects of layer number and fibre spacing density on the anti-penetration performance were discussed. The results show that the failure modes of the steel front plate were shearing and plugging, and that the failure mode of the aluminium rear plate was ductile prolonging deformation when the tied interface failed by tension (or shearing and plugging when the interface remained connected) for the two-layer target. For the three-layer target, the failure modes of the steel front plate and the aluminium middle plate were shearing and plugging, while the steel rear plate failed by ductile prolonging deformation. At the same time, the steel-fibres failed by bending and tensile deformation. The anti-penetration performance of the three-layer composite targets was better compared with the performance of the two-layer targets when the areal density and fibre spacing density were equal. The reinforced fibres will improve the anti-penetration performance of the targets, and the ballistic resistance decreased with an increase in the fibre spacing distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号