首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four dispersion methods were used for the preparation of vapour grown carbon nanofibre (VGCNF)/epoxy composites. It is shown that each method induces certain levels of VGCNF dispersion and distribution within the matrix, and that these have a strong influence on the composite electrical properties. A homogenous VGCNF dispersion does not necessarily imply higher electrical conductivity. In fact, it is concluded that the presence of well distributed clusters, rather than a fine dispersion, is more important for achieving larger conductivities for a given VGCNF concentration. It is also found that the conductivity can be described by a weak disorder regime.  相似文献   

2.
By combining a high sensitive dielectric sensor into a parallel plate rheometer, the time evolution of the dielectric properties of polyethylene/carbon nanotube composites was measured in the molten state under oscillatory shear. Composites with single- (SWCNT) or multiwall (MWCNT) carbon nanotubes initially decrease its conductivity proportional to the oscillatory shear-strain applied. After this initial drop, some composites increase the conductivity under these non-quiescent conditions reflecting a possible shear-induced agglomeration process. The latter based on the complex permittivity spectrum showing a shortening in the CNT-CNT distances in these composites after shear. At concentrations below the electrical percolation threshold, the presence of both SWCNTs and MWCNTs reduces the DC conductivity of the molten matrices. This result shows that carbon nanotubes can act as a scavenger for impurities or additives present in commercial polyethylenes.  相似文献   

3.
We review experimental and theoretical work on electrical percolation of carbon nanotubes (CNT) in polymer composites. We give a comprehensive survey of published data together with an attempt of systematization. Parameters like CNT type, synthesis method, treatment and dimensionality as well as polymer type and dispersion method are evaluated with respect to their impact on percolation threshold, scaling law exponent and maximum conductivity of the composite. Validity as well as limitations of commonly used statistical percolation theories are discussed, in particular with respect to the recently reported existence of a lower kinetic (allowing for re-aggregation) and a higher statistical percolation threshold.  相似文献   

4.
Polymer composites with high permittivity and low dielectric loss are highly desirable in electronic and electrical industry. Adding conductive fillers could significantly increase the permittivity of a polymer. However, polymer composites containing conductive fillers often exhibit very high dielectric loss due to their large electrical conduction or leakage currents. In this work, by engineering TiO2-nanorod-decorated multi-walled carbon nanotubes (TD-CNTs), polystyrene (PS) composite with high permittivity and low dielectric loss have been successfully prepared. The composite containing of 17.2 vol.% TD-CNTs has a permittivity of 37 at 1 kHz, which is 13.7 times higher than that of the pure PS (2.7), while the dielectric loss still remains at a low value below 0.11. The dielectric properties of the composites are closely related to the length of CNTs and the loading level of TiO2-nanorods on the CNT surfaces.  相似文献   

5.
Poly(lactic acid) (PLA)/multi-walled carbon nanotube (MWNT) composites were melt spun with different take-up velocities (max. 100 m/min) to obtain electrically conductive fibres. The incorporation of MWNT contents between 0.5 and 5.0 wt.% was realised in a previous melt mixing process using twin-screw extrusion. The relative resistance change of the fibres caused by contact with different solvents (water, n-hexane, ethanol, methanol) and solvent concentrations was used as liquid sensing response, whereas the time dependent resistance was recorded during immersion and drying cycles. Transmission electron microscopy and Raman spectroscopy indicated enhanced orientation of MWNT along the fibre axis with take-up velocity, resulting in decreased sensitivity during solvent contact. Additionally, sensitivity decreased as the weight content of MWNT increased and was furthermore dependent on the characteristics of used solvents. In context with the targeted application of leakage detection, fibres with low MWNT amount and low draw down ratio (as extruded fibres with 2 wt.% MWNT) are suitable, as they showed relative resistance changes of up to 87% after 10 min immersion in methanol even if the recovery upon drying was suppressed significantly.  相似文献   

6.
Commercial Udel® poly(ether sulfone) (PSU) was filled with three different commercially available multiwalled carbon nanotubes (MWCNTs) by small scale melt mixing. The MWCNTs were as grown NC 7000 and two of its derivatives prepared by ball milling treatment. One of them was unmodified (NC 3150); the other was amino modified (NC 3152). The main difference beside the reactivity was the reduced aspect ratio of NC 3150 and NC 3152 caused by ball milling process. All PSU/MWCNT composites with similar filler content were prepared under fixed processing conditions and comparative analysis of their electrical and mechanical properties were performed and were correlated with their microstructure, characterized by optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A non-uniform MWCNT dispersion was observed in all composites. The MWCNTs were present in form of agglomerates in the size of 10–60 μm whereas the deagglomerated part was homogeneously distributed in the PSU matrix. The differences in the agglomeration states correlate with the variations of properties between different PSU/MWCNT composites. The lowest electrical percolation threshold of 0.25–0.5 wt.% was observed for the shortened non-functionalized MWCNT composites and the highest for amine-modified MWCNT composites (ca. 1.5 wt.%). The tensile behavior of the three composites was only slightly altered with CNT loading as compared to the pure PSU. However, the elongation at break showed a reduction with MWCNT loading and the reduction was least for composite with best MWCNT dispersion.  相似文献   

7.
Raman spectroscopy is used to access the dispersion state of DWNTs in a PEEK polymer matrix. The interaction of the outer tube with the matrix can be determined from the line shape of the Raman G band. This allows us to distinguish regions where the nanotubes are well dispersed and regions where the nanotubes are agglomerated. The percolation threshold of the electrical conductivity of the double wall carbon nanotubes (DWNTs)/PEEK nanocomposites is found to be at 0.2-0.3 wt%. We find a maximum electrical conductivity of 3 × 10−2 S cm−1 at 2 wt% loading. We detect nanotube weight concentrations as low as 0.16 wt% by Raman spectroscopy using a yellow excitation wavelength. We compare the Raman images with transmission electron microscopy images and electrical conductivity measurements. A statistical method is used to find a quantitative measure of the DWNTs dispersion in the polymer matrix from the Raman images.  相似文献   

8.
Conventional micro-fiber-reinforced composites provide insight into critical structural features needed for obtaining maximum composite strength and stiffness: the reinforcements should be long, well aligned in a unidirectional orientation, and should have a high reinforcement volume fraction. It has long been a challenge for researchers to process CNT composites with such structural features. Here we report a method to quickly produce macroscopic CNT composites with a high volume fraction of millimeter long, well aligned CNTs. Specifically, we use the novel method, shear pressing, to process tall, vertically aligned CNT arrays into dense aligned CNT preforms, which are subsequently processed into composites. Alignment was confirmed through SEM analysis while a CNT volume fraction in the composites was calculated to be 27%, based on thermogravimetric analysis data. Tensile testing of the preforms and composites showed promising mechanical properties with tensile strengths reaching 400 MPa.  相似文献   

9.
Silica coated multiwalled carbon nanotubes (SiO2@MWCNTs) with different coating thicknesses of ∼4 nm, 30–50 nm, and 70–90 nm were synthesized by a sol–gel method and compounded with polyurethane (PU). The effects of SiO2@MWCNTs on the electrical properties and thermal conductivity of the resulting PU/SiO2@MWCNT composites were investigated. The SiO2 coating maintained the high electrical resistivity of pure PU. Meanwhile, incorporating 0.5, 0.75 and 1.0 wt% SiO2@MWCNT (70–90 nm) into PU, produced thermal conductivity values of 0.287, 0.289 and 0.310 W/mK, respectively, representing increases of 62.1%, 63.3% and 75.1%. The thermal conductivity of PU/SiO2@MWCNT composites was also increased by increasing the thickness of the SiO2 coating.  相似文献   

10.
Transparent conductive composites can be achieved from PVDF–MWCNT at very low concentration of MWCNT. These composites show different degree of UV–Visible radiation absorption depending on MWCNT concentration in composites. The composition dependent dielectric properties and AC conductivity were also measured for these composites. Properties like AC conductivity, dielectric constant and loss are increasing with filler concentration. The variations of DC conductivity against composition and temperature are also reported. The electrical hysteresis and electrical set are observed for PVDF–MWCNT composites when subjected to heating–cooling cycle. The validity of different theoretical models depicting percolation threshold with respect to DC conductivity was tested for these composites.  相似文献   

11.
Two ethylene–vinyl acetate (EVA) copolymers containing 10 and 25 wt.% vinyl acetate (EVA10 and EVA25) were utilized to explore the effect of molecular polarity on the formation of conductive carbon nanotube (CNT) network in EVA melt under an electric field. Because of the different interfacial energy, it was supposed to be stronger molecular chain-CNT interaction in CNT/EVA25 than that in CNT/EVA10. The critical time for conductive CNT network formation decreased with annealing temperature, filler loading and EVA polarity. The activation energy of conductive CNT network formation (93.9 kJ/mol) in CNT/EVA10 is lower than that (104.7 kJ/mol) in CNT/EVA25. By a thermodynamic percolation model, the percolation threshold at the equilibrium state was about 0.19 vol.% for CNT/EVA10, while it rose to 0.27 vol.% for CNT/EVA25. Morphological observation showed a high degree of CNT alignment in CNT/EVA10 compared to CNT/EVA25 after application of an electric field. The results suggested the strong CNT–EVA chain interaction and higher viscosity of polymer matrix limited the CNT alignment and the conductive network tended to form easily in EVA melt with a low chain polarity.  相似文献   

12.
A novel particles-compositing method was used for the first time to disperse different contents of multi-walled carbon nanotubes (CNTs) in micron sized copper powders, which were subsequently consolidated into CNT/Cu composites by spark plasma sintering (SPS). Microstructural observations showed that the homogeneous distribution of CNTs and dense composites could be obtained for 0–10 vol.% CNT contents. The CNT clusters were appeared in the powder mixture with 15 vol.% CNTs, which resulted in an insufficient densification of the composites. The effective thermal conductivity of the composites was analyzed both theoretically and experimentally. The addition of CNTs showed no enhancement in overall thermal conductivity of the composites due to the interface thermal resistance associated with the low phase contrast of CNT to copper and the random tube orientation. Besides, the composite containing 15 vol.% CNTs led to a rather low thermal conductivity due possiblely to the combined effect of unfavorable factors induced by the presence of CNT clusters, i.e. large porosity, lower effective conductivity of CNT clusters themselves and reduction of SPS cleaning effect. The CNT/Cu composites may be a promising thermal management material for heat sink applications.  相似文献   

13.
Multiwalled carbon nanotubes (MWCNTs)/epoxy nanocomposites were fabricated by using ultrasonication and the cast molding method. In this process, MWCNTs modified by mixed acids were well dispersed and highly loaded in an epoxy matrix. The effects of MWCNTs addition and surface modification on the mechanical performances and fracture morphologies of composites were investigated. It was found that the tensile strength improved with the increase of MWCNTs addition, and when the content of MWCNTs loading reached 8 wt.%, the tensile strength reached the highest value of 69.7 MPa. In addition, the fracture strain also enhanced distinctly, implying that MWCNTs loading not only elevated the tensile strength of the epoxy matrix, but also increased the fracture toughness. Nevertheless, the elastic modulus reduced with the increase of MWCNTs loading. The reasons for the mechanical property changes are discussed.  相似文献   

14.
Melt processing of thermoplastic-based nanocomposites is the favoured route to produce electrically conductive or electrostatic dissipative polymer composites containing carbon nanotubes (CNT). As these properties are desired at low filler fractions, a high degree of dispersion is required in order to benefit from the intrinsic CNT properties. This study discusses the influence of screw configuration, rotation speed, and throughput on the residence time and specific mechanical energy (SME) and the resulting macroscopic CNT dispersion in polycaprolactone (PCL) based masterbatches containing 7.5 wt.% multi-walled carbon nanotubes (MWNT) using an intermeshing co-rotating twin-screw extruder Berstorff ZE25.  相似文献   

15.
This paper presents an analytical and experimental study on the strain sensing behavior of carbon nanotube (CNT)-based polymer composites. Tensile tests were conducted on CNT/polycarbonate composites and the responses in the electrical resistance were measured during the tests. An analytical model incorporating the electrical tunneling effect due to the matrix material between CNTs was also developed to describe the electrical resistance change as a result of mechanical deformation. The model deals with the inter-nanotube matrix deformation at the micro/nanoscale due to the macroscale deformation of the nanocomposites. A comparison of the analytical predictions and the experimental data showed that the proposed model captures the sensing behavior. In addition, the effect of the micro/nanoscale structures on the strain induced resistance change was discussed to provide useful information for designing CNT-based polymer composites with high strain sensing capability.  相似文献   

16.
The electrical resistivity of injection moulded carbon nanotube filled polymer parts is a result of the process history and the raw material. Key factors of the process are temperature and shear history of the melt. Various process parameters affect the aforementioned factors. Articles reviewed in here discuss effects of injection moulding and related processes, such as melt compounding. Furthermore, articles have been reviewed which describe the effect of shear, composition and temperature on the structure of the conductive CNT network. These effects are then related to the solidification of the part, resulting in the variation of the percolated network of CNTs. The variation of the network structure results in a variation of the electrical resistivity within the part.  相似文献   

17.
The study investigates the effect of carbon nanotubes (CNTs) on the damage development in a woven carbon fiber/epoxy composite under quasi-static tension in the bias direction. The composite is produced by the resin transfer molding and contains 0.25 wt.% of CNTs in the matrix. The tensile tests are carried out till different strain levels and are accompanied with acoustic emission (AE) registration. The nano-modified composite possesses a higher stiffness and strain-to-failure. It also exhibits a significantly increased AE activity, both in terms of the number of events and the energy level, but reveals a lower crack density. The combined analysis of the AE data and X-ray images indicates that in the nano-modified composite cracks progress through the material in smaller jumps than in the virgin composite. The crack faces in the composite with CNTs also display a fine web of secondary fractures, which is not detected in the virgin composite.  相似文献   

18.
We report the results of an extensive multi-stress ratio experimental study on the axial fatigue behavior of an all-carbon hierarchical composite laminate, in which carbon nanofibers (CNFs) are utilized alongside traditional micron-sized carbon fibers. Primary carbon fibers were arranged in matrix-dominated biax ±45° lay-ups in order to establish matrix and matrix/fiber interaction based performance. CNFs were matrix dispersed by three-roll calender milling. Results indicate that the CNF-reinforced composites collectively possess improved fatigue and static properties over their unmodified counterparts. Large mean lifetime improvements of 150–670% were observed in fully compressive, tensile and tensile dominated loadings. Enhancements are attributed to the high interface density and damage shielding effect of the CNFs within the matrix. Further improvements are believed to occur when the nanofibers arrest and redistribute small scale, slowly propagating matrix cracks at low applied stresses. These results highlight the ability of a nanometer-sized reinforcing phase to actively participate and enhance matrix properties while moving toward a cost effective alternative to current material solutions.  相似文献   

19.
A modified method for interconnecting multi-walled carbon nanotubes (MWCNTs) was put forward. And interconnected MWCNTs by reaction of acyl chloride and amino groups were obtained. Scanning electron microscopy shows that hetero-junctions of MWCNTs with different morphologies were formed. Then specimens of pristine MWCNTs, chemically functionalized MWCNTs and interconnected MWCNTs reinforced epoxy resin composites were fabricated by cast moulding. Tensile properties and fracture surfaces of the specimens were investigated. The results show that, compared with pristine MWCNTs and chemically functionalized MWCNTs, the chemically interconnected MWCNTs improved the fracture strain and therefore the toughness of the composites significantly.  相似文献   

20.
This research attempts to utilize polymer degradability in modifying electrical properties of poly(l-lactide) (PLLA)/poly(methyl methacrylate) (PMMA)/carbon fillers composites. Three kinds of carbon particles, i.e. carbon black, vapor-grown carbon fiber, and carbon nanotube, were compounded with PLLA/PMMA blend, followed by hydrolytic degradation of the composites, resulted in degradation of PLLA molecular chain from the surface of samples, with PMMA and carbon particles remained undegraded. By controlling degradation rate, it was possible to prepare samples with low surface resistivity, yet at the same time exhibited high value of volume resistivity. It was also found that final electrical properties of degraded composites depend on the size and the shape of the fillers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号