首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Limited proteolysis of the NAD+-dependent DNA ligase from Bacillus stearothermophilus with thermolysin results in two fragments which were resistant to further proteolysis. These fragments were characterised by N-terminal protein sequencing and electrospray mass spectrometry. The larger, N-terminal fragment consists of the first 318 residues and the smaller, C-terminal fragment begins at residue 397 and runs to the C terminus. Both fragments were over-expressed in Escherichia coli and purified to homogeneity from this source. The large fragment retains the full self-adenylation activity of the intact enzyme, has minimal DNA binding activity and vastly reduced ligation activity. The small fragment lacks adenylation activity but binds to nicked DNA with a similar affinity to that of the intact enzyme. It is unable to stimulate the ligation activity of the large fragment. Atomic absorption spectroscopy showed that the intact protein and the small fragment bind a zinc ion but the large fragment does not. No evidence of any interaction between the two fragments could be obtained. Thus, we conclude that NAD+-dependent DNA ligases consist of at least two discrete functional domains: an N-terminal domain which is responsible for cofactor binding and self adenylation, and a C-terminal DNA-binding domain which contains a zinc binding site.  相似文献   

2.
Sarcoplasmic reticulum (SR) membranes purified from young adult (4-6 months) and aged (26-28 months) Fischer 344 male rat skeletal muscle were compared with respect to the functional and structural properties of the Ca-ATPase and its associated lipids. While we find no age-related alterations in (1) expression levels of Ca-ATPase protein, and (2) calcium transport and ATPase activities, the Ca-ATPase isolated from aged muscle exhibits more rapid inactivation during mild (37 degrees C) heat treatment relative to that from young muscle. Saturation-transfer EPR measurements of maleimide spin-labeled Ca-ATPase and parallel measurements of fatty acyl chain dynamics demonstrate that, accompanying heat inactivation, the Ca-ATPase from aged skeletal muscle more readily undergoes self-association to form inactive oligomeric species without initial age-related differences in association state of the protein. Neither age nor heat inactivation results in differences in acyl chain dynamics of the bilayer including those lipids at the lipid-protein interface. Initial rates of tryptic digestion associated with the Ca-ATPase in SR isolated from aged muscle are 16(+/- 2)% higher relative to that from young muscle. indicating more solvent exposure of a portion of the cytoplasmic domain. During heat inactivation these structural differences are amplified as a result of immediate and rapid further unfolding of the Ca-ATPase isolated from aged muscle relative to the delayed unfolding of the Ca-ATPase isolated from young muscle. Thus age-related alterations in the solvent exposure of cytoplasmic peptides of the Ca-ATPase are likely to be critical to the loss of conformational and functional stability.  相似文献   

3.
Direct intraspinal injection of the catecholamines epinephrine and norepinephrine, and the alpha-adrenergic agents dexmedetomidine and clonidine, produced a dose-dependent elevation of pain thresholds in the Northern grass frog, Rana pipiens. Significant analgesic effects were noted for at least 4 h. The analgesic effect of intraspinal dexmedetomidine or epinephrine was blocked by systemic pretreatment with the alpha 2-adrenoceptor antagonists, yohimbine and atipamezole, but not with the alpha 1-adrenoceptor antagonist, prazosin. Dose-response analyses showed that dexmedetomidine, epinephrine, norepinephrine had similar analgesic potencies, but clonidine was significantly less potent. Analgesia was observed without accompanying motor or sedative effects. These results suggest that alpha 2-adrenoceptor mechanisms which mediate analgesia may have evolved early in vertebrate evolution and that descending epinephrine-containing fibers in the amphibian nervous system may be the source of endogenous catecholamines regulating nociceptive sensitivity in the amphibian spinal cord.  相似文献   

4.
This paper describes and evaluates a method for quantifying the amounts of specific plasma proteins adsorbed to biomaterial surfaces. In particular, it demonstrates that macroscopic images ('stains'), that assess the spatial distribution of albumin, IgG, fibrinogen, and HMK (high molecular weight kininogen), can be obtained over areas of at least 12 cm2 using immunospecific adhesion of dyed polystyrene beads. Stain intensities, measured with a scanner and an image analysis system, were found to quantify the amount of specific protein in the solution used to coat the surfaces. Results obtained with the proposed method produced single protein isotherms for albumin, immunoglobulin G (IgG) and fibrinogen that followed Langmuir-like adsorption behavior and were similar to previously published isotherms. The HMK isotherm also exhibited Langmuir-like adsorption behavior. The proposed method also detected the presence of an expected maximum in the adsorption of fibrinogen onto glass as a function of plasma dilution. Adsorption of fibrinogen out of 6.4% plasma onto glass from a separated flow produced results indicating the quantity as well as the location of fibrinogen at the boundary of the separated region. This result confirmed the utility of the proposed method for detecting spatial distributions of specific proteins adsorbed from plasma in practical devices.  相似文献   

5.
In addition to its role in olfaction and as a primary epileptogenic site, the anterior piriform cortex has been suggested to play a role in neuroperception of deficiencies or imbalances in physiologically essential amino acids. In recent studies, amino acid deficient diets were shown to induce expression of c-fos in the anterior piriform cortex within the rapid time frame associated with the normal anorectic response to such diets. It became important to examine the neurocytochemical architecture of this region for clues as to how and more precisely where dietary amino acid deficiency or imbalance might be monitored. The relationships of neuropeptide Y-, somatostatin-, and cholecystokinin-containing neurons were of particular interest because ongoing studies indicate that those peptides administered to the anterior piriform cortex alter intake of diets deficient in essential amino acids. The neuropeptides were endogenous to intrinsic neurons only; none resembled pyramidal projection neurons. Peptidergic neurons and fibers were concentrated most heavily in layer III of the paleocortex. The cytoarchitecture suggests that neuropeptide Y-, somatostatin-, and cholecystokin-containing neurons of the anterior piriform cortex may relate synaptically or multisynaptically to local circuit neurons during electrical activity, modulation of olfactory information, and neuroperception of essential amino acids.  相似文献   

6.
Isometric ATP consumption and force were investigated in mechanically skinned fibres from iliofibularis muscle of Xenopus laevis. Measurements were performed at different [Ca2+], in the presence and absence of caffeine (5 nM). In weakly Ca2+-buffered solutions without caffeine, spontaneous oscillations in force and ATPase activity occurred. The repetition frequency was [Ca2+]-and temperature-dependent. The Ca2+ threshold (+/- SEM) for the oscillations corresponded to a pCa of 6.5 +/- 0.1. The maximum ATP consumption associated with calcium uptake by the sarcoplasmic reticulum (SR) reached during the oscillations was similar to the activity under steady-state conditions at saturating calcium concentrations in the presence of caffeine. Maximum activity was reached when the force relaxation was almost complete. The calculated amount of Ca2+ taken up by the SR during a complete cycle corresponded to 5.4 +/ 0.4 mmol per litre cell volume. In strongly Ca2+-buffered solutions, caffeine enhanced the calcium sensitivity of the contractile apparatus and, at low calcium concentrations, SR Ca uptake. These results suggest that when the SR is heavily loaded by net Ca uptake, there is a massive calcium-induced calcium release. Subsequent net Ca uptake by the SR then gives rise to the periodic nature of the calcium transient.  相似文献   

7.
The effects of nitric oxide on the activities of thapsigargin-sensitive sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Ca2+ uptake by sarcoplasmic reticulum (SR) membranes prepared from white skeletal muscle of rabbit femoral muscle were studied. Pretreatment of the SR preparations with nitric oxide at concentrations of up to 250 microM for 1 min decreased the SERCA activity concentration dependently, and also decreased their Ca2+ uptake. Both these effects of nitric oxide were reversible. Inhibitors of guanylyl cyclase and protein kinase G (PKG) had no significant effect on the nitric oxide-induced inhibitions of SERCA and Ca2+ uptake. Moreover, dithiothreitol did not reverse the inhibitory effects of nitric oxide on SERCA and Ca2+ uptake. These findings suggest that nitric oxide inhibits SERCA, mainly SERCA 1, of rabbit femoral skeletal muscle by an action independent of the cyclic GMP-PKG system or oxidation of thiols, and probably by a direct action on SERCA protein.  相似文献   

8.
The muscle relaxant dantrolene sodium acts directly and specifically on skeletal muscle, unlike other pharmacological agents which affect the central nervous system or act at the nueromuscular junction. Dantrolene sodium markedly suppresses the release of calcium previously sequestered by skeletal, but not cardiac, muscle sarcoplasmic reticulum. No effect in the total amount of calcium accumulated was found. In situ, the drug may reduce the amount of calcium necessary for muscle contraction.  相似文献   

9.
We have previously shown that the basic, amphipathic peptide melittin inhibits the Ca-ATPase of the sarcoplasmic reticulum membrane by inducing large-scale aggregation of the enzyme via electrostatic cross-linking. To better understand the physical mechanism by which melittin-induced Ca-ATPase aggregation inhibits the enzyme, we have performed time-resolved phosphorescence anisotropy (TPA) and steady-state fluorescence experiments in combination with enzyme kinetic assays, utilizing (1) native and charge-modified melittin in order to characterize the peptide charge dependence of the melittin-SR interaction, and (2) various calcium levels in order to define the effect of melittin on the enzyme's E1 and E2 conformational equilibrium. TPA results showed that decreasing melittin's positive charge dramatically decreases the ability of the peptide to aggregate the enzyme, which correlates with a reduced potency of the modified peptide to inhibit enzymatic activity. Steady-state fluorescence of fluorescein isothiocyanate-labeled Ca-ATPase showed that melittin reduces Ca-ATPase affinity for calcium by shifting the enzyme's E1-E2 conformational equilibrium toward E2, but increasing calcium progressively reverses this shift. Kinetic experiments showed that melittin does not prevent ATP-dependent enzyme phosphorylation, but it completely inhibits Pi-dependent EP formation and substantially slows Pi release during steady-state cycling. We conclude that melittin-induced aggregation of the Ca-ATPase depends on the electrostatic interaction of the peptide with cytoplasmic Ca(2+)-dependent sites on the enzyme, and that enforced Ca-ATPase protein-protein interactions inhibit the conformational transitions that facilitate phosphoenzyme hydrolysis.  相似文献   

10.
Slices of lapine meniscus produced large amounts of nitric oxide after stimulation with interleukin-1, tumor necrosis factor alpha, or a mixture of lapine synovial cytokines known as chondrocyte-activating factors. Monolayer cultures of meniscal cells produced from the proteolysis of meniscal tissue contained a mixed population of chondrocytic and fibroblastic cells. These cultures also produced large amounts of nitric oxide in response to cytokines. Monolayer cultures of meniscal cells produced by the explant method, in contrast, were uniformly fibroblastic and did not produce nitric oxide in response to cytokines. We conclude that menisci contain two populations of cells, one fibroblastic and the other chondrocytic. The chondrocytic cells are responsible for generating most of the nitric oxide in response to cytokines. Endogenously generated nitric oxide suppressed the synthesis of collagen and proteoglycan by menisci but protected proteoglycan from the catabolic effects of interleukin-1. The inhibitory effect of nitric oxide on collagen synthesis occurred without greatly altering the abundance of mRNAs encoding the various collagen alpha chains. During further investigation, arginine was unexpectedly found to stimulate the synthesis of collagen and, to a lesser degree, of noncollagenous proteins but not of proteoglycans. Fragments of meniscus, but not meniscal cells in monolayer culture, increased their production of matrix metalloproteinases, lactate, and, especially, prostaglandin E2 in response to interleukin-1. Inhibition of nitric oxide production with NG-monomethyl-L-arginine enhanced production of matrix metalloproteinases but had little effect on the synthesis of lactate or prostaglandin E2.  相似文献   

11.
The pyrimidine nucleotide, uridine triphosphate (UTP), was tested with skinned skeletal muscle fibers in order to investigate the UTP-sensitive pathway of Ca2+ release from the sarcoplasmic reticulum. The presence of ryanodine (200 microM), ruthenium red (10 microM) or heparin (2.5 mg/ml) did not affect the tension elicited in the presence of UTP, demonstrating that the UTP-induced Ca2+ release involved neither ryanodine nor inositol triphosphate-sensitive channels. Drugs such as compound 48/80 or cyclopiazonic acid used to inhibit Ca2+-ATPase in its reverse function appeared to be, respectively, non-specific or without any inhibitory effect on the tension induced by UTP. Finally, the UTP-induced tension as well as the trifluoperazine-induced tension were abolished in the presence of spermidine (50 mM), supporting the hypothesis that the UTP-sensitive pathway of the SR Ca2+ release might occur through the uncoupled calcium ATPase.  相似文献   

12.
We describe ATP-dependent inhibition of the 75-105-pS (in 250 mM Cl-) anion channel (SCl) from the sarcoplasmic reticulum (SR) of rabbit skeletal muscle. In addition to activation by Ca2+ and voltage, inhibition by ATP provides a further mechanism for regulating SCl channel activity in vivo. Inhibition by the nonhydrolyzable ATP analog 5'-adenylylimidodiphosphate (AMP-PNP) ruled out a phosphorylation mechanism. Cytoplasmic ATP (approximately 1 mM) inhibited only when Cl- flowed from cytoplasm to lumen, regardless of membrane voltage. Flux in the opposite direction was not inhibited by 9 mM ATP. Thus ATP causes true, current rectification in SCl channels. Inhibition by cytoplasmic ATP was also voltage dependent, having a K(I) of 0.4-1 mM at -40 mV (Hill coefficient approximately 2), which increased at more negative potentials. Luminal ATP inhibited with a K(I) of approximately 2 mM at +40 mV, and showed no block at negative voltages. Hidden Markov model analysis revealed that ATP inhibition 1) reduced mean open times without altering the maximum channel amplitude, 2) was mediated by a novel, single, voltage-independent closed state (approximately 1 ms), and 3) was much less potent on lower conductance substates than the higher conductance states. Therefore, the SCl channel is unlikely to pass Cl- from cytoplasm to SR lumen in vivo, and balance electrogenic Ca2+ uptake as previously suggested. Possible roles for the SCl channel in the transport of other anions are discussed.  相似文献   

13.
Clotrimazole (CLT), an antimycotic drug, has been shown to inhibit proliferation of normal and cancer cell lines and its systemic use as a new tool in the treatment of proliferative disorders is presently under scrutiny (Benzaquen, L. R., Brugnara, C., Byers, H. R., Gattoni-Celli, S., and Halperin, J. A. (1995) Nature Med. 1, 534-540). The action of CLT is thought to involve depletion of intracellular Ca2+ stores but the underlying mechanism has not been defined. The present study utilized membrane vesicles of rabbit cardiac sarcoplasmic reticulum (SR) to determine the mechanism by which CLT depletes intracellular Ca2+ stores. The results revealed a strong, concentration-dependent inhibitory action of CLT on the ATP-energized Ca2+ uptake activity of SR (50% inhibition with approximately 35 microM CLT). The inhibition was of rapid onset (manifested in <15 s), and was accompanied by a 7-fold decrease in the apparent affinity of the SR Ca2+-ATPase for Ca2+ and a minor decrement in the enzyme's apparent affinity toward ATP. Exposure of SR to CLT in the absence or presence of Ca2+ resulted in irreversible inhibition of Ca2+ uptake demonstrating that the Ca2+-bound and Ca2+-free conformations of the Ca2+-ATPase are CLT-sensitive. Introduction of CLT to the reaction medium subsequent to induction of enzyme turnover with Ca2+ and ATP resulted in instantaneous cessation of Ca2+ transport indicating that an intermediate enzyme species generated during turnover undergoes rapid inactivation by CLT. The inhibition of Ca2+ uptake by CLT was accompanied by inhibition of Ca2+-stimulated ATP hydrolysis and Ca2+-induced phosphoenzyme intermediate formation from ATP in the ATPase catalytic cycle. Phosphorylation of the Ca2+-deprived enzyme with Pi in the reverse direction of catalytic cycle and Ca2+ release from Ca2+-preloaded SR vesicles were unaffected by CLT. It is concluded that CLT depletes intracellular Ca2+ stores by inhibiting Ca2+ sequestration by the Ca2+-ATPase. The mechanism of ATPase inhibition involves a drug-induced alteration in the Ca2+-binding site(s) resulting in paralysis of the enzyme's catalytic and ion transport cycle. CLT (50 microM) caused marked depression of contractile function in isolated perfused, electrically paced rabbit heart preparations. The contractile function recovered gradually following withdrawal of CLT from the perfusate indicating the existence of mechanisms in the intact cell to inactivate, metabolize, or clear CLT from its target site.  相似文献   

14.
Circular smooth muscle strips isolated from cat gastric fundus were studied in order to understand whether the sarcoplasmic reticulum (SR) and SR Ca2+-ATPase could play a role in the regulation of the muscle tone. Cyclopiazonic acid (CPA), a specific inhibitor of SR Ca2+-ATPase, caused a significant and sustained increase in muscle tone, depending on the presence of extracellular Ca2+. Nifedipine and cinnarizin only partially suppressed the CPA-induced tonic contraction. Bay K 8644 antagonized the relaxant effect of nifedipine in CPA-contracted fundus. Nitric-oxide-releasing agents sodium nitroprusside and 3-morpholino-sydnonimine completely suppressed the CPA-induced tonic contraction. The blockers of Ca2+-activated K+ channels, tetraethylammonium, charybdotoxin and/or apamin, decreased the contractile effect of CPA. Vanadate increased the tone but did not change significantly the effect of CPA. CPA exerted its contractile effect even when Ca2+ influx was triggered through the Na+/Ca2+ exchanger and the other Ca2+ entry pathways were blocked. Thapsigargin, another specific SR Ca2+-ATPase inhibitor, also increased the muscle tone. The effect of thapsigargin was completely suppressed by sodium nitroprusside and 3-morpholino-sydnonimine and partially by nifedipine. In conclusion, under conditions when the SR Ca2+-ATPase is inhibited, the tissue develops a strong tonic contraction and a large part of this is mediated by Ca2+ influx presumably via nifedipine-sensitive Ca2+ channels. This study suggests the important role of SR Ca2+-ATPase in the modulation of the muscle tone and the function of SR as a "buffer barrier" to Ca2+ entry in the cat gastric fundus smooth muscle.  相似文献   

15.
Synaptic NMDA-type glutamate receptors are anchored to the second of three PDZ (PSD-95/Discs large/ZO-1) domains in the postsynaptic density (PSD) protein PSD-95. Here, we report that citron, a protein target for the activated form of the small GTP-binding protein Rho, preferentially binds the third PDZ domain of PSD-95. In GABAergic neurons from the hippocampus, citron forms a complex with PSD-95 and is concentrated at the postsynaptic side of glutamatergic synapses. Citron is expressed only at low levels in glutamatergic neurons in the hippocampus and is not detectable at synapses onto these neurons. In contrast to citron, p135 SynGAP, an abundant synaptic Ras GTPase-activating protein that can bind to all three PDZ domains of PSD-95, and Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) are concentrated postsynaptically at glutamatergic synapses on glutamatergic neurons. CaM kinase II is not expressed and p135 SynGAP is expressed in less than half of hippocampal GABAergic neurons. Segregation of citron into inhibitory neurons does not occur in other brain regions. For example, citron is expressed at high levels in most thalamic neurons, which are primarily glutamatergic and contain CaM kinase II. In several other brain regions, citron is present in a subset of neurons that can be either GABAergic or glutamatergic and can sometimes express CaM kinase II. Thus, in the hippocampus, signal transduction complexes associated with postsynaptic NMDA receptors are different in glutamatergic and GABAergic neurons and are specialized in a way that is specific to the hippocampus.  相似文献   

16.
The oncogene bcl-2 encodes a 26-kD protein localized to intracellular membranes, including the ER, mitochondria, and perinuclear membrane, but its mechanism of action is unknown. We have been investigating the hypothesis that Bcl-2 regulates the movement of calcium ions (Ca2+) through the ER membrane. Earlier findings in this laboratory indicated that Bcl-2 reduces Ca2+ efflux from the ER lumen in WEHI7.2 lymphoma cells treated with the Ca2+-ATPase inhibitor thapsigargin (TG) but does not prevent capacitative entry of extracellular calcium. In this report, we show that sustained elevation of cytosolic Ca2+ due to capacitative entry is not required for induction of apoptosis by TG, suggesting that ER calcium pool depletion may trigger apoptosis. Bcl-2 overexpression maintains Ca2+ uptake in the ER of TG-treated cells and prevents a TG-imposed delay in intralumenal processing of the endogenous glycoprotein cathepsin D. Also, Bcl-2 overexpression preserves the ER Ca2+ pool in untreated cells when extracellular Ca2+ is low. However, low extracellular Ca2+ reduces the antiapoptotic action of Bcl-2, suggesting that cytosolic Ca2+ elevation due to capacitative entry may be required for optimal ER pool filling and apoptosis inhibition by Bcl-2. In summary, the findings suggest that Bcl-2 maintains Ca2+ homeostasis within the ER, thereby inhibiting apoptosis induction by TG.  相似文献   

17.
Cut muscle fibers from Rana temporaria (sarcomere length, 3.5-3.9 micro(m); 14-16 degreesC) were mounted in a double Vaseline-gap chamber and equilibrated with an external solution that contained tetraethyl ammonium- gluconate and an internal solution that contained Cs as the principal cation, 20 mM EGTA, and 0 Ca. Fibers were stimulated with a voltage-clamp pulse protocol that consisted of pulses to -70, -65, -60, -45, and -20 mV, each separated by 400-ms periods at -90 mV. The change in total Ca that entered into the myoplasm (Delta[CaT]) and the Ca content of the SR ([CaSR]) were estimated with the EGTA/phenol red method (Pape, P.C., D.-S. Jong, and W.K. Chandler. 1995. J. Gen. Physiol. 106:259-336). Fibers were stimulated with the pulse protocol, usually every 5 min, so that the resting value of [CaSR] decreased from its initial value of 1,700-2, 300 microM to values near or below 100 microM after 18-30 stimulations. Three main findings for the voltage pulses to -70, -65, and -60 mV are: (a) the depletion-corrected rate of Ca release (release permeability) showed little change when [CaSR] decreased from its highest level (>1,700 microM) to approximately 1,000 microM; (b) as [CaSR] decreased below 1,000 microM, the release permeability increased to a maximum level when [CaSR] was near 300 microM that was on average about sevenfold larger than the values observed for [CaSR] > 1,000 microM; and (c) as [CaSR] decreased from approximately 300 microM to <100 microM, the release permeability decreased, reaching half its maximum value when [CaSR] was approximately 110 microM on average. It was concluded that finding b was likely due to a decrease in Ca inactivation, while finding c was likely due to a decrease in Ca-induced Ca release.  相似文献   

18.
A single fibre bundle from rat soleus muscle was chemically skinned with saponin and the transfer of myosin heads from the thick filaments to the thin filaments at a sarcomere length of 2.4 microm was measured as a function of Ca2+ concentration using an x-ray diffraction method at 4-7 degrees C. In the relaxed state, the 1,0 spacing was 42.08 nm. The spacing showed no significant decrease when the Ca2+ concentration was below the threshold (-log10 [Ca2+] or pCa 5.8). No significant transfer of the myosin heads occurred when the Ca2+concentration was below the threshold (pCa 5.8). When the muscle was maximally activated at pCa 4.4, the spacing decreased to 40.35 nm. During the maximum isometric contraction at pCa 4.4, 54. 9 +/- 6.5% (+/-SE of the mean) of the myosin heads were transferred to the thin filaments. The transfer of the myosin heads was approximately proportional to relative tension. These results suggest that myosin heads of both fast-twitch and slow-twitch skeletal muscles transferred on the common movement as a function of Ca2+ concentration.  相似文献   

19.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Members of the bcl-2 gene family encode proteins that function either to promote or to inhibit apoptosis. Despite numerous efforts, the mechanism of action of Bcl-2, an anti-apoptotic protein, is still not clear. In particular, the relation between Bcl-2 and the endoplasmic reticulum (ER) calcium store is not well-understood. In the present work, we examined the effect of Bcl-2 on the ER store. We demonstrate that overexpression of Bcl-2 in breast epithelial cells modulates ER store by upregulating calcium pump (SERCA) expression without affecting the release channel (IP3R). The steady state levels of SERCA2 mRNA and protein were both increased in Bcl-2 expression clones. The increase in SERCA2 protein leads to accelerated calcium uptake and enhanced Ca2+ loading. In addition, we also show the detection of intracellular interaction between Bcl-2 and SERCA molecules by co-immunoprecipitation. Since high lumenal Ca2+ concentration of ER is essential for normal cell functions, the results suggest that Bcl-2 preserves the ER Ca2+ store by upregulating SERCA gene expression as well as by a possible interaction with the pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号